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1 Introduction

1.1 Overview

The Optimal transport problem provides a rigorous framework for comparing probability mea-
sures, and has become a central tool in modern analysis and probability, as well as having found
wide applications ranging from fluid mechanics and economics to data science and imaging.

This report is concerned with the stability properties of optimal transport. While qualitative
stability is well understood, quantitative estimates remain a subject of active research. Such
estimates are crucial in applied contexts where data are inevitably discretised or noisy. The
structure of the report is as follows:

In Chapter 1, we provide a brief summary of the optimal transport theory, then provide some
motivation for the quantitative stability problem. Notably, we emphasise the necessity of study-
ing the stability of optimal plans rather than maps. We formulate the main problem, providing
some preliminary results in this direction.

In Chapter 2, we review some of the current literature on qualitative stability with a source
fixed absolutely continuous, as well as providing some extensions of a certain result to a larger
class of measures.

In Chapter 3, we then shift towards the main theme of this report. Our approach is to begin
to study the fully discrete setting, where the transport problem admits a linear programming
formulation with a rich combinatorial structure.

In Chapter 4, we provide a (partial) analysis of quantitative stability properties of discrete
optimal plans under perturbations.

In Chapter 5, we use the intuition given by the discrete transport problem to provide a sharper
understanding of optimal transport in the general case, significantly refining known uniqueness
criteria for Kantorovich potentials (optimisers of the dual problem).

1.2 Background on optimal transport

Let ρ and µ be two probability measures supported inside X ,Y ⊂ Rd. Let c : X × Y → R+ be
lower semi-continuous and integrable in the sense that there exist a ∈ L1(ρ), b ∈ L1(µ) such that
c(x, y) ≤ a(x) + b(y) pointwise. The optimal transport problem is the minimisation problem

min
γ∈Π(ρ,µ)

∫
X×Y

c(x, y)dγ(x, y). (1.1)

Here, Π(ρ, µ) is the set of probabilities over Rd×Rd with first marginal ρ and second marginal µ.
Under our hypotheses on c, the existence of solutions to (1.1) is classical, see [33, Theorem 1.3].
As a linear optimisation problem with convex constraints, problem (1.1) admits the following
dual formulation

max
ϕ,ψ

ϕ⊕ψ≤c

∫
X
ϕ(x)dρ(x) +

∫
Y
ψ(y)dµ(y). (1.2)
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Here the supremum is taken over all ϕ ∈ L1(X , ρ) and ψ ∈ L1(Y, µ) such that

ϕ(x) + ψ(y) ≤ c(x, y) for all (x, y) ∈ X × Y. (1.3)

By a density argument (See Lusin’s theorem [29, Theorem 2.24] and its corollary), the value
of (1.2) is equal to if we took the supremum only over ϕ ∈ Cb(X ) and ψ ∈ Cb(Y). Under
our hypotheses on c, as soon as the value of (1.1) is finite, we have existence of optimisers in
L1(ρ), L1(µ) (but not necessarily Cb), see [34, Theorem 5.10]. Given ϕ, ψ admissible, we define
their c-transforms as

ϕc(y) := inf
x∈X

c(x, y)− ϕ(x); ψc(x) := inf
y∈Y

c(x, y)− ψ(y).

Functions which can be written as the c-transform of some function are referred to as c-concave.
Take any (ϕ, ψ) admissible for (1.2), then

ϕ(x) ≤ ψc(x) ∀x ∈ X (1.4)

pointwise as a consequence of (1.3). Hence, the pair (ψc, ψ) always performs at least as well
while still respecting the constraint. Applying another c-transform yields (ψc, (ψc)c) which also
performs no worse. However, this process cannot be iterated indefinitely, as ((ψc)c)c = ψc. Now
take any (ϕ, ψ) optimal for (1.2). Taking a c transform cannot increase the value of the objective
in (1.2), thus ∫

X
ϕ(x)dρ(x) =

∫
X
ψc(x)dρ(x). (1.5)

Combining (1.4) and (1.5), we deduce ϕ = ψc ρ-a.e. and hence without loss of generality, we can
always choose representatives of any optimal potentials which are c-concave. The dual problem
(1.2) is also often reformulated as the following so called semi-dual problem

sup
ψ∈Cb(Y)

∫
X
ψc(x)dρ(x) +

∫
Y
ψ(y)dµ(y). (1.6)

Convex duality (said to be “Kantorovich Duality” in this case) tells us that the values of the
primal and dual problems (1.1) and (1.2) are equal. Furthermore, for any γ ∈ Π(ρ, µ) optimal
for (1.1) and any pair (ϕ, ϕc) optimal for (1.2),

Supp γ ⊂ {(x, y) ∈ X × Y : ϕ(x) + ϕc(y) = c(x, y)} . (1.7)

The set on the right-hand side is referred to as the graph of the c-superdifferential of ϕ, denoted
∂cϕ, with a symmetric definition given for ψ. Furthermore, if for some admissible γ and (ϕ, ψ),
(1.7) holds, both are optimal for their respective problems.

A set W ⊂ X × Y is said to be c-cyclically monotone if for every finite sequence of points
(x1, y1), ...(xn, yn) ∈W and any permutation σ of {1, .., n},

n∑
i=1

c(xi, yi) ≤
∑
i=1

c(xi, yσ(i)) (1.8)

When the cost is continuous γ ∈ Π(ρ, µ) is optimal for (1.1) if and only if Supp γ is c-cyclically
monotone, see [31, Corollary 1]. If ρ and µ are discrete measures, then (1.8) holds with a strict
inequality every time we take points such that (xi, yi) ̸= (xj , yj) (one equality is fine but not
both at the same time) and take σ a non trivial permutation.

In the specific case c(x, y) = ∥x−y∥p and X = Y = Rd, the p-th root of the value of the optimal
transport problem between ρ and µ defines the p-Wasserstein distance

Wp(ρ, µ) :=

(
inf

γ∈Π(ρ,µ)

∫
Rd×Rd

∥x− y∥pdγ(x, y)
)1/p

.
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When p = 2, observing that∫
X×Y

∥x− y∥2dγ(x, y) =
∫
X
∥x∥2dρ(x) +

∫
X
∥y∥2dµ(y)− 2

∫
X×Y

⟨x|y⟩dγ(x, y). (1.9)

The first two terms are independent of the choice of γ ∈ Π(ρ, µ) and so (1.1) is equivalent to
maximising the correlation

∫
⟨x|y⟩dγ, or using the cost c(x, y) = −⟨x|y⟩. For this problem,

Kantorovich duality reads

max
γ∈Π(ρ,µ)

∫
X×Y

⟨x|y⟩dγ(x, y) = min
ψ∈C0(Y)

∫
X
ψ∗(x)dρ(x) +

∫
Y
ψ(y)dµ(y), (1.10)

where here the c(x, y) = −⟨x|y⟩ transform acts as convex conjugation, defined for ψ ∈ C0(Y) by

ψ∗(x) = sup
y∈Rd

⟨x|y⟩ − ψ(y). (1.11)

This is equivalent to extending ψ by +∞ outside of Y, then taking the usual Legendre transform
with supremum over all of Rd. Dual potentials φ for the cost c(x, y) = 1

2∥x − y∥2 and dual
potentials ϕ for c(x, y) = −⟨x, y⟩ are thus in bijection, related by

ϕ(x) =
1

2
∥x∥2 − φ(x).

In the case that ρ is absolutely continuous and both measures have bounded second moment,
a theorem of Y. Brenier [9] asserts that the optimal transport plan γ ∈ Π(ρ, µ) is unique and
induced by the map T = ∇ψ∗, where ψ is a solution to the dual problem on the right hand side
of (1.10). Such an optimal ψ∗ is henceforth referred to as a Brenier potential. If we assume
further that Supp ρ is the closure of a connected open set and Suppµ is bounded, the potentials
ψ,ψ∗ are respectively µ-a.e./ρ-a.e. uniquely defined up to a constant[30, Proposition 7.18]. We
present sharper conditions for uniqueness in Chapter 5.

1.3 Motivation for quantitative stability

Stability in optimal transport is important for applications, as well as being significant from a
purely mathematical viewpoint. Qualitative stability in optimal transport is well understood,
established as a consequence of compactness arguments. In particular, from [30, Section 1.6.4]

Theorem 1.1. Let X and Y be compact metric spaces, let ρn ∈ P(X ) and µn ∈ P(Y) be se-
quences of probability measures converging weakly (in duality with continuous bounded functions)
to limits ρn ⇀ ρ and µn ⇀ µ. Then, up to a subsequence

• Optimal plans γn between ρn and µn converge weakly to an optimal plan between ρ and µ.

• If they exist, for ρn ≡ ρ fixed, optimal maps Tn from ρ to µn converge strongly in L2(ρ) to
the optimal map T between ρ and µ.

• Optimal dual potentials between ρn and µn converge uniformly to an optimal pair for ρ
and µ.

• Wp(ρn, µn) →Wp(ρ, µ).

The question of quantitative stability in optimal transport has been the subject of numerous
recent works. The case where one measure is absolutely continuous has received a lot of interest
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recently [15, 13, 22, 18]. Here, the source measure ρ is fixed as an absolutely continuous measure
with support X ⊂ Rd, and the target measure µ is perturbed. The authors derive results of the
form

∥Tρ→µ0 − Tρ→µ1∥L2(ρ) ≤ Cρ,YW1(µ0, µ1)
q for all µ0, µ1 ∈ P(Y), (1.12)

for some q ≤ 1. Here Tρ→µi represents the unique quadratic optimal transport map from ρ to µi.
The best exponent currently proven here is q = 1/6 in [13]. The following example illustrates
that we cannot hope for better than q = 1/2 in general.

Example 1.2. [12, Lemma 5.2] Let ρ(x) = 1
πχB1(x) as the uniform probability measure on the

unit disc in R2. Let xθ = (sin θ, cos θ), then define µθ =
1
2δxθ +

1
2δxθ+π

. In this case, the optimal
transport between ρ and µθ is given by

Tρ→µθ(x) =

{
xθ if ⟨x|xθ⟩ ≥ 0

xθ+π if ⟨x|xθ⟩ < 0

see Figure 1.1. We can calculate explicitly the quantities involved. For small θ,

Figure 1.1: The optimal map Tρ→µθ . Taken from [21, Figure 1].

Wp(µ0, µθ) = 2 sin(θ/2) ∼ |θ|

for any p ≥ 1. Also,

∥Tρ→µθ − Tρ→µ0∥2L2(ρ) =

(
1− |θ|

π

)
|2 sin(θ/2)|2 + |θ|

π
|2 sin((π − θ)/2)|2 ∼ 4|θ|

π
.

Hence, we cannot hope for better than q = 1/2 in (1.12).

Current proof techniques actually do not establish (1.12) directly. Instead, first establishing a
similar statement for optimisers of the dual problem (1.2), of the form

∥ϕρ→µ0 − ϕρ→µ1∥L2(ρ) ≤ Cρ,YW1(µ0, µ1)
q for all µ0, µ1 ∈ P(Y). (1.13)

Here ϕρ→µi denotes the Brenier potential between ρ and µi, satisfying (
∫
ϕdρ = 0). This

constraint is imposed to guarantee the uniqueness of potentials (they are unique up to a constant
here without this additional constraint). We give a slightly more detailed overview of this theory
in Chapter 2, for an in depth exposition we refer the reader to [21].

1.4 Stability of transport plans

Going beyond one measure absolutely continuous has received comparatively little study. [24]
treats stability in both marginals in the neighbourhood of measures whose optimal map between
them is Lipschitz, slightly extending the result of [15]. Such regularity assumptions on optimal
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maps are hard to verify in applications. Moreover, they are often not true - Brenier’s theorem
does not apply, so in many cases we may not even have the existence of optimal maps, let alone
regular ones. It is usually more reasonable to have some regularity assumptions on one of the
measures.

Problem 1. Let ρ satisfy some regularity assumptions, for example, of the form

(i) Continuous: ρ has density comparable to Lebesgue measure of a bounded compact set.
(ii) Discrete: ρ is a fully discrete measure, given by the projection of an absolutely continuous

measure onto a uniform grid mesh placed over its support.
(iii) Rough: ρ is comparable to Lebesgue measure “up to resolution ε” in the sense of [17,

Assumption 1], in that there exist constants 0 < λ ≤ Λ such that for any ball Br ⊂ Supp ρ
with r ≥ ε, we have

λ|Br| ≤ ρ(Br) ≤ Λ|Br|.

For what constants C and exponents q are the optimal transport plans stable in the following
sense: There exists a “small” error E depending on [(i) the datum of ρ (ii) the mesh grid size
(iii) the resolution ε] such that

Wp(γρ→µ0 , γρ→µ1) ≤ CWp(µ0, µ1)
q + E . (1.14)

Note that on the left-hand side, Wp is taken with respect to the Euclidean distance on the
product space Rd×Rd, while those on the right-hand side are for the Euclidean distance on Rd.
We do not distinguish between these cases in notation, as it is clear from the context.

In case (iii), E should depend on ε in a way which vanishes as ε → 0. Understanding the
sharp behaviour in this case should simultaneously explain (ii), and this in turn should induce a
result for (i) as a consequence of qualitative stability arguments. The advantage of studying the
discrete formulation is that the Laguerre cells induced on the target domain by choosing a dual
potential for ρ have a very nice structure generally here, as will be further discussed in Chapter
3. One can also perturb both marginals at the same time, with an additional Wp(ρ0, ρ1) term
on the right-hand side of (1.14).

We make three immediate observations regarding the stability of optimal plans. The first is that
a form of “reverse stability” of plans always holds.

Proposition 1.3. Let p ∈ (1,∞). Let ρ0, ρ1, µ0 and µ1 be probabilities on Rd with finite
p-moments. Let γi ∈ Π(ρi, µi) be optimal transport plans between their marginals for the p-cost.
Then

W p
p (γ0, γ1) ≥ cp(W

p
p (ρ0, ρ1) +W p

p (µ0, µ1)).

where cp = min(1, 2p/2−1).

Proof. Set η ∈ Π(γ0, γ1) ⊂ Π(ρ0, µ0, ρ1, µ1) as an optimal p-cost transport on Rd × Rd between
γ0 and γ1. The projections onto first and third or second and fourth coordinates give couplings
between ρ0 and ρ1 or µ0 and µ1 respectively. These are candidates for the respective transport
problems, so

W p
p (γ0, γ1) =

∫
R2d×R2d

∥(x0, y0)− (x1, y1)∥pdη(x0, y0, x1, y1)

=

∫
R2d×R2d

(
d∑
i=1

(x0,i − x1,i)
2 +

d∑
i=1

(y0,i − y1,i)
2

)p/2
dη(x0, y0, x1, y1)

≥ cp

∫
R2d

∥x0 − x1∥pdπ13#η + cp

∫
R2d

∥y0 − y1∥pdπ24#η ≥W p
p (ρ0, ρ1) +W p

p (µ0, µ1).
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where we used the inequality (a+ b)p/2 ≥ cp(a
p/2 + bp/2) with cp = min(1, 2

p
2
−1).

The second observation is that “plans are always at least as stable as maps”. Fix ρ and two
targets µ0, µ1. Assume the existence of maps Ti for the p-transport between ρ and µi and set
γρ→µi = (Id, Tρ→µi)#ρ ∈ Π(ρ, µi) as the optimal plans induced by them. Then

Wp(γρ→µ0 , γρ→µ1) ≤ ∥T0 − T1∥Lp(ρ). (1.15)

To see this, it suffices to observe that (Id, Tρ→µ0 , Id, Tρ→µ1)#ρ is an admissible coupling between
γρ→µ0 and γρ→µ1 , and its transport cost is precisely ∥T0−T1∥pLp(ρ). Consequently, all the results

of [13, 22] pass directly to plans, so that for the continuous case (i), E = 0 with q = 1/6, under
suitable assumptions on ρ and the target support.

The third observation is related to the following natural question: Is the worst-case behaviour of
plans any better than that of maps? Consider again Example 1.2, except now we are interested
in the Wasserstein distance between the optimal plans γρ→µθ = (Id, Tρ→µθ)#ρ. Consider the
following coupling η ∈ Π(γρ→µ0 , γρ→µ1), defined by

η = (Id, Tρ→µ0 , Rθ, RθTρ→µ0) ∈ Π(γρ→µ0 , γρ→µθ),

where Rθ is the matrix representing rotation anticlockwise by θ in R2. This is a valid coupling
since (Rθ, Rθ)#γρ→µ0 = γρ→µθ . η gives an upper bound on the W2 distance between the two
plans. In particular,

W 2
2 (γρ→µ0 , γρ→µθ) ≤

∫
R2×R2

∥x0 − x1∥2 + ∥y0 − y1∥2dη(x0, y0, x1, y1)

=

∫
R2

∥x−Rθx∥2 + ∥Tρ→µ0(x)−RθTρ→µ0(x)∥2dρ(x)

=
1

π

∫ 1

0

∫ 2π

0

(
2r sin(θ/2)

)2
rdϕdr +

(
2 sin(θ/2)

)2
=

(
1

2
+ 1

)(
2 sin(θ/2)

)2
=

3

2
W 2

2 (γρ→µ0 , γρ→µθ)

since ∥Tρ→µ0(x)−RθTρ→µ0(x)∥ = 2 sin(θ/2) ρ-a.e. Hence, in this case, the plans exhibit Lipschitz
behaviour, better than the Hölder 1/2 of the maps. The argument below demonstrates that plans
cannot be Lipschitz in general, but leaves the door open to exponents in (1/2, 1).

Lemma 1.4. For fixed ρ and two targets µ0, µ1, all compactly supported. Set γi ∈ Π(ρ, µi) as
the optimal plans induced by optimal maps Ti. Let

cε(x0, y0, x1, y1) = ∥x0 − x1∥2 + ε∥y0 − y1∥2,

and denote

τcε(γ0, γ1) = inf
η∈Π(γ0,γ1)

∫
R4

cε(x0, y0, x1, y1)dη(x0, y0, x1, y1) (1.16)

as the transport cost between plans with respect to cε. Then

1

ε
τcε(γ0, γ1) → ∥T0 − T1∥2L2(ρ),

and optimal plans ηε for (1.16) converge weakly to (Id, T0, Id, T1)#ρ.

Proof. This is simply a consequence of the stability of plans with respect to uniform convergence
of costs. We present here a self-contained proof of this fact. Consider optimisers ηε ∈ Π(γ0, γ1)
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for the cε problem. By compactness, we can assume these converge weakly up to a subsequence
to some η0 ∈ Π(γ0, γ1). Then strong-weak convergence gives∫

R2d

cεdηε →
∫
R2d

c0dη0.

But we also have
|τc0(γ0, γ1)− τcε(γ0, γ1)| ≤ ∥c0 − cε∥∞,

and hence
∫
c0dη0 = τc0(γ0, γ1). In other words, the limit η0 is optimal. But this optimiser must

precisely be
η0 = (Id, T0, Id, T1)#ρ

since it has zero cost for c0 = ∥x0 − x1∥2, and this is the only way to glue through the identity
(since we have existence of maps). Hence∫

R4d

∥y0 − y1∥2dηε(x0, y0, x1, y1) ≤
1

ε
τcε(γ0, γ1) ≤ ∥T0 − T1∥2L2(ρ),

where the first inequality is by monotonicity of the cost ∥y0 − y1∥2 ≤ 1
εcε(x0, y0, x1, y1) and

the fact that ηε is optimal for cε, and the second inequality is a consequence of the plan
(Id, T0, Id, T1)#ρ as a competitor for the cε problem. Passing to the limit ε → 0, the left
hand side converges to ∥T0 − T1∥2L2(ρ) by weak convergence, and hence so does 1

ετcε(γ0, γ1) by
squeezing.

Proposition 1.5 (Optimal plans cannot be Lipschitz). Fix ρ a probability density bounded above
and below on a compact set with non-empty interior in Rd. Then, given a compact set Y in Rd
with non empty interior, there does not exist Cρ,Y > 0 such that for all µ0, µ1 probabilities on
Y,

W2(γρ→µ0 , γρ→µ1) ≤ CW2(µ0, µ1). (1.17)

where here γρ→µi = (Id, Tρ→µi)#ρ are the plans induced by the optimal maps from ρ → µi for
quadratic cost.

Proof. Since Y has non-empty interior, it contains a closed ball. By invariance of optimisers to
the quadratic OT problem under dilations and translations, we may assume Y = B(0, 1) =: B1.
Assume that (1.17) holds on B1 with constant C > 0. Given µ0, µ1 ∈ P(B1), we define the
contractions

µεi := pε#µi where pε(y) = εy.

We have µεi ∈ P(B1) and hence

W2(γρ→µε0
, γρ→µε1

) ≤ CW2(µ
ε
0, µ

ε
1). (1.18)

A change of variables shows that

W2(µ
ε
0, µ

ε
1) = εW2(µ0, µ1)

since π ∈ Π(µ0, µ1) if and only if (εy0, εy1)#π ∈ Π(µε0, µ
ε
1). Furthermore,

η ∈ Π(γρ→µ0 , γρ→µ1) ⇐⇒ (x0, εy0, x1, εy1)#η ∈ Π(γρ→µε0
, γρ→µε1

)

and so

W 2
2 (γρ→µε0

, γρ→µε1
) = inf

η∈Π(γρ→µ0 ,γρ→µ1 )

∫
∥x0 − x1∥2 + ∥εy0 − εy1∥2dη(x0, y0, x1, y1)

=τcε2 (γρ→µ0 , γρ→µ1).
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Consequently, (1.18) becomes

τcε2 (γρ→µ0 , γρ→µ1) ≤ C2ε2W 2
2 (µ0, µ1).

Dividing by ε2 and taking ε→ 0 using Lemma 1.4 followed by a square root implies

∥Tρ→µ0 − Tρ→µ1∥L2(ρ) ≤ CW2(µ0, µ1) for all µ0, µ1 ∈ P(B1).

But this is known to be impossible: Example 1.2 contradicts this. Thus, there can be no Cρ,Y > 0
such that (1.17) holds.

Remark 1.6. If one could quantify the convergence in Lemma 1.4, then the cost cε could
potentially be used to invert inequalities of the form (1.15) and given a stability result about
plans, infer back to stability about the maps.

The principal aim of this report is to begin to treat quantitative stability beyond the case where
one measure is fixed absolutely continuous. This is important for applications, as often one
might work, for example, with a source which is a discretisation of an absolutely continuous
measure, with a very fine mesh. To the best of our knowledge, there are no known techniques to
treat stability with this type of source measure. Our approach is, in leaving behind absolutely
continuous measures, to go to the other extreme. We study the quantitative stability properties
of the fully discrete transport problem, aiming to recover statements for general target measures
as the result of a qualitative limit. In the fully discrete case, the optimal transport problem
becomes a linear program, which gives us another lens through which to understand the stability.
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2 Stability with one measure fixed absolutely
continuous

In the first half of this chapter, we review some of the literature on the quantitative stability
of the quadratic optimal transport problem with one measure fixed and absolutely continuous.
The first result of this form without regularity hypotheses on the maps was attained in [7]. In
[13], techniques were developed to attain stability exponents in (1.12) that are independent of
the dimension d. These have been further used to extend the same results to a larger class of
source measures in [22], and to Riemannian manifolds in [18]. In general, these techniques have
been designed to treat the quadratic cost, with some extensions to p-costs in [26]. For a more
complete account of this theory, see [21].

In the second half of the chapter, we provide an extension of a certain strong convexity inequality
to a larger class of measures, using techniques developed in [22]. This extends the results on
the quantitative stability of Wasserstein barycentres in [11] to a much larger class of absolutely
continuous measures.

2.1 The Kantorovich functional

Fix ρ to be an absolutely continuous probability measure with support X , which is the closure
of a connected open bounded set in Rd. Fix also Y ⊂ Rd compact. To study the stability of
Brenier potentials, we consider the semi-dual problem

min
ψ∈Cb(Y)

∫
X
ψ∗(x)dρ(x) +

∫
ψ(y)dµ(y), (2.1)

where ψ∗ represents the Legendre transform defined in (1.11). This problem is a convex op-
timisation problem over Cb(Y), and hence (informally) stability of minimisers is equivalent to
strong convexity of the objective (2.1). The second term is linear, so we can focus on the first
term, which motivates the following definition. The Kantorovich functional is defined as

Kρ : C(Y) → R ψ 7→
∫
X
ψ∗(x)dρ(x),

where the Legendre transform is taken as in (1.11). First introduced in [19] to study the
convergence of algorithms for semi-discrete optimal transport, the Kantorovich functional is the
central tool for the stability results presented in this chapter. The following proposition is a
minor generalisation of [12, Lemma 1.8], providing a characterisation of the subdifferential of
Kρ.

Proposition 2.1 (Characterisation of the Subdifferential). Kρ is a convex, 1-Lipschitz func-
tional on Cb(Y) equipped with ∥ · ∥∞ norm. The subdifferential of Kρ is given by

∂Kρ(ψ) = {−µ | µ = pY#γ, γ ∈ P(X × Y); Supp γ ⊂ ∂ψ} . (2.2)

where pY : X × Y → Y denotes the canonical projection onto Y and ∂ψ ⊂ X × Y denotes the
graph on the subdifferential of ψ∗.
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Proof. The subdifferential is a priori valued in the topological dual C0(Y)∗, the space of finitely
additive measures. Since the Legendre transform is a 1-Lipschitz operator on C0(Y), and it is
pointwise convex, Kρ is a 1-Lipschitz convex functional on C0(Y). Hence, by subdifferential rules
for convex functions (see [2, Corollary 2.1]),

−µ ∈ ∂Kρ(ψ) ⇐⇒ ψ ∈ arg min

∫
X
ψ∗dρ+

∫
Y
ψdµ. (2.3)

We now show that any such µ should be a positive probability measure. Assume first ⟨1|µ⟩ =
m ̸= 1. Then for any ψ ∈ C0(Y), replacing with ψ + λ for some λ ∈ R gives∫

X
(ψ + λ)∗dρ+

∫
Y
ψ + λdµ =

∫
X
ψ∗dρ+

∫
Y
ψdµ+ λ(m− 1)

and so taking λ → ±∞ depending on the sign of m − 1 gives that no argmin can exist. Thus,
any element of ∂Kρ should have total mass −1. Similarly, assume there exists some measurable
A ⊂ Y for which ⟨χA|µ⟩ = m < 0. As mentioned in the introduction, by a density argument
(see [29, Theorem 2.24]) (2.1) has the same value as if we instead took the infimum over all
ψ ∈ L1(µ). Then, if ψ ∈ Cb(Y) is optimal, it is also optimal over all L1(µ). Considering ψ+λχA
for λ > 0, by monotonicity of the Legendre transform∫

X
(ψ + λχA)

∗dρ+

∫
Y
ψ + λχAdµ ≤

∫
X
ψ∗dρ+

∫
Y
ψdµ+ λm

from which again ψ cannot belong to the argmin. Hence, any subdifferential element is a negative
measure of mass −1.

Now knowing that the only measures in ∂Kρ are negative probability measures, by (2.3), com-
bined with the compatibility condition (1.7), we arrive at (2.2).

Remark 2.2. In general, Kρ is never strongly convex, as it is affine along the path ψ + t for
t ∈ R - paths corresponding to the same dual potential up to a constant. To avoid this, we
fix the constants of the potentials so that the Brenier potential is mean free (

∫
ψ∗dρ = 0).

Since Supp ρ is the closure of a connected open set, [30, Proposition 7.18] tells us that mean free
potentials are unique in this setting.

We now turn to strong convexity estimates for Kρ, which in turn will imply quantitative stability
of Brenier potentials.

Theorem 2.3. [13, Theorem 2.1][22, Theorem 2.1] Let Q ⊂ Rd be a compact convex set with
non-empty interior, and let ρ be a probability density over Q satisfying Mρ ≥ ρ ≥ mρ > 0. Then
for all ψ0, ψ1 ∈ C0(Y) we have

Varρ(ψ
∗
1 − ψ∗

0) ≤ Cψ⟨ψ∗
1 − ψ∗

0|(∇ψ∗
0)#ρ− (∇ψ∗

1)#ρ⟩

where Cψ = e
Mρ

mρ
(Mϕ −mϕ) for mϕ ≤ ψ∗

i ≤Mϕ.

Here, we make explicit the dependence of the above constant on ψ, in terms of the oscillation of
the Brenier potentials (Mϕ −mϕ). When both X and Y are bounded, we can uniformly bound
this, and also when X is bounded and all target measures satisfy a uniform pth moment bound
for p > d, as demonstrated in [7, 13]. The above strong convexity directly implies the following
quantitative stability estimates for both maps and potentials.

Corollary 2.3.1. [13] Let X ⊂ Rd be a compact convex set with non-empty interior, and let ρ
be a probability density over X satisfying Mρ ≥ ρ ≥ mρ > 0. Then for any Y ⊂ Rd compact,
there exists Cρ,Y > 0 such that for any µ0, µ1 probability measures supported inside Y, denoting
ψi optimal dual potentials for the transport between ρ and µi,

∥ψ∗
1 − ψ∗

0∥L2(ρ) ≤ CW1(µ0, µ1)
1
2 . (2.4)
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Proof. We observe that in the preceding theorem, the constant C depended on ψ only by the
oscillation Mϕ −mϕ. By definition of the Legendre transform restricted to Y,

ψ∗(x) = sup
y∈Y

⟨x|y⟩ − ψ(y)

is a supremum of RY Lipschitz functions x 7→ ⟨x|y⟩−ψ(y) where RY is the radius of the smallest
ball containing Y. Hence, ψ∗ is RY Lipschitz, and its oscillation over X is bounded by

Mϕ −mϕ ≤ (DiamX )RY .

Furthermore, due to the invariance of the quadratic optimal transport problem to translations,
translating Y allows us to replace RY with DiamY. Thus Cψ in (2.6) is uniformly bounded in
ψ, depending only on ρ and Y.

Secondly, by Brenier’s theorem, (∇ψ∗
i )#ρ = µi so that applying Theorem 2.3 gives

∥ψ∗
1 − ψ∗

0∥2L2(ρ) = Varρ(ψ
∗
1 − ψ∗

0) ≤ C⟨ψ0 − ψ1|µ1 − µ0⟩,

where the first equality is due to our choice of mean free potentials. Finally, since ψ∗
1 − ψ∗

0 is
2DiamY Lipschitz continuous, Kantorovich Rubinstein duality gives

∥ψ∗
1 − ψ∗

0∥L2(ρ) ≤ CW1(µ0, µ1)
1/2

as required.

Corollary 2.3.2. [13] Let X ⊂ Rd be a compact convex set with non-empty interior and Hd−1

rectifiable boundary, and let ρ be a probability density over X satisfying Mρ ≥ ρ ≥ mρ > 0. Then
for any Y ⊂ Rd compact, there exists Cρ,Y > 0 such that for any µ0, µ1 probability measures
supported inside Y, denoting Ti the unique optimal transport maps between ρ and µi,

∥T1 − T0∥L2(ρ) ≤ CW1(µ0, µ1)
1
6 . (2.5)

Proof. One combines [13, Proposition 4.1] with Corollary 2.3.1, using again that the Lipschitz
constants of ψ∗

0 and ψ∗
1 are uniformly bounded.

2.2 Glueing strong convexity inequalities

The proof of Theorem 2.3 allows for a slightly stronger strong convexity inequality presented be-
low, which has found other usage, for example, in studying the stability of Wasserstein Barycen-
tres in [11] and for the optimal matching problem in [16]. In particular, we have

Theorem 2.4. [11, Appendix B], [13] Under the same hypotheses as Theorem 2.3, for all
ψ0, ψ1 ∈ C0(Y),

Varρ(ψ
∗
1 − ψ∗

0) ≤ Cψ

(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ⟩
)
. (2.6)

where Cψ = e(d+ 1)2d+1M
2
ρ

m2
ρ
(Mϕ −mϕ), for mϕ ≤ ψ∗

i ≤Mϕ.

In [22, 18], the authors treat stability for a much larger class of absolutely continuous source
measures ρ. One decomposes the source domain into cubes, upon each of which we can apply
Theorem 2.4. Then, under regularity assumptions on ρ, it is shown that the sum of stability
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errors locally over each cube can be combined to give a stability result globally across the domain.
These techniques were applied to deduce the stability of maps and potentials for more general
source measures. However, the techniques here did not directly establish (2.6) for the same
larger class of ρ. Using the same glueing techniques, we obtain a strong convexity inequality
(2.6) for John domains, which, to our knowledge, is new in this generality. We first review the
glueing theory used in [22].

Definition 2.5 (Boman Chain condition). [8] A probability measure ρ on an open set X ⊂ Rd
satisfies the Boman chain condition with parameters A,B,C > 1 if there exists a covering F of
X of open cubes Q ∈ F such that

• for σ = min(10/9, (d+ 1)/d) and for any x ∈ Rd,∑
Q∈F

χσQ(x) ≤ AχX (x). (2.7)

• For some fixed cube Q0 in F , called the central cube, and for every Q ∈ F , there exists a
chain Q0, Q1, ..., QN = Q of distinct cubes from F such that for any j ∈ {0, ..., N − 1},

Q ⊂ BQj (2.8)

Where BQj is the cube with the same centre as Qj and side length multiplied by B.

• Consecutive cubes of the above chain rho-verlap quantitatively: for any j ∈ {0, ..., N − 1},

ρ(Qj ∩Qj+1) ≥ C−1max(ρ(Qj), ρ(Qj+1)). (2.9)

Note that the length N of the chain can depend on Q ⊂ F and need not be uniformly bounded
over Q ∈ F . The following lemma is the crux of the argument, providing a way to combine local
stability on each cube of a Boman decomposition into a global stability result.

Lemma 2.6. [22, Lemma 3.3] Let ρ be a probability density over a domain X satisfying the
Boman chain condition for some covering F and some A,B,C > 1 with B ∈ N. Assume
moreover that there exists D > 0 such that

∀Q ∈ F , ρ(5B
√
d) ≤ Dρ(Q). (2.10)

Then settting ρ̃Q = 1
ρ(Q)ρ|Q, for any continuous function f on X , it holds

Varρ(f) ≤ 200A2CD3
∑
Q∈F

ρ(Q)Varρ̃Q(f).

Theorem 2.7 (Strong convexity for more general source). Let ρ be a probability density over
a domain X ⊂ Rd satisfying the Boman chain condition for some covering F and A,B,C > 1.
Assume moreover that (2.10) holds for some D > 0 (w.l.o.g. we assume D > 1) and there exists
E > 0 such that

sup
Q∈F

MρQ

mρQ

≤ E < +∞. (2.11)

Let Y ⊂ Rd be a compact set. Set C = 200eA3CD3E2(d+ 1)2d+1M
2
ρ

m2
ρ
Diam(Y)Diam(X ). Then,

for any ψ0, ψ1 ∈ C(Y), there holds

Varρ(ψ
∗
1 − ψ∗

0) ≤ C

(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ ⟩
)
. (2.12)
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Proof. For each Q ∈ F set ρ̃Q = 1
ρ(Q)ρ|Q, then Theorem 2.6 tells us

Varρ̃Q(ψ
∗
1 − ψ∗

0) ≤ C1

(
Kρ̃Q(ψ1)−Kρ̃Q(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ̃Q⟩
)
. (2.13)

where C1 = e(d+ 1)2d+1E2Diam(Y)Diam(X ). Combining Lemma 2.6 with (2.13), we get

Varρ(ψ
∗
1 − ψ∗

0) ≤200A2CD3
∑
Q∈F

ρ(Q)Varρ̃Q(ψ
∗
1 − ψ∗

0)

≤200A2CD3C1

∑
Q∈F

(
Kρ|Q(ψ1)−Kρ|Q(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ|Q⟩
)
.

Now define a partition F ′ of X such that x, x′ belong to the same element P ∈ F ′ if and only if
they belong to the same elements of F . Proposition 2.1 applied to Kρ|P tells us that

Kρ|P (ψ1)−Kρ|P (ψ0) + ⟨ψ1 − ψ0|(∇ψ∗
0)#ρ|P ⟩ ≥ 0 ∀P ∈ F ′. (2.14)

It follows that

Varρ(ψ
∗
1 − ψ∗

0) ≤200A3CD3C1

∑
P∈F ′

(Kρ|P (ψ1)−Kρ|P (ψ0) + ⟨ψ1 − ψ0|(∇ψ∗
0)#ρ|P )

=200A3CD3C1

(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ ⟩
)
.

Where the first inequality is due to the chain condition of no more than A cubes simultaneously
overlapping by (2.7) and the second equality is due to P being a partition of X .

In particular, since the uniform measure on a John domain satisfies the Bowman chain condition
(see [8, Lemma 2.1]), we have the following.

Theorem 2.8 (Strong convexity of the Kantorovich function on John domains). Let X ⊂ Rd
be a John domain with non-empty interior. Let ρ be a probability density on X bounded above
and below by positive constants. Then for every compact set Y there exists a constant Cρ,Y > 0
such that

Varρ(ψ
∗
1 − ψ∗

0) ≤ C

(
Kρ(ψ1)−Kρ(ψ0) + ⟨ψ1 − ψ0|(∇ψ∗

0)#ρ⟩
)
.
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3 The discrete transport problem

We now shift to the main focus of this report, the fully discrete optimal transport problem.
Such problems have a natural interpretation as a linear programming problem, which we will
exploit heavily.

3.1 Primal and dual polyhedra

In the special case of fully discrete optimal transport, both dual and primal problems are linear
programming problems. Specifically, fix weights α ∈ RM , β ∈ RN strictly positive probability
vectors. Given X = (x1, ..., xM ) ∈ (Rd)M and Y = (y1, ..., yN ) ∈ (Rd)N , we set

ρX =
M∑
i=1

αiδxi and µY =

N∑
j=1

βjδyj . (3.1)

We define a cost matrix C(X,Y ) ∈ RM×N by C(X,Y )ij = c(xi, yj), and also the convex poly-
hedra of couplings

Π(α, β) :=

γ̂ ∈ RM×N : γ̂ij ≥ 0,
M∑
i=1

γ̂ij = βj and
N∑
j=1

γ̂ij = αi for i = 1, ...,M ; j = 1, ..., N

 .

Note here that we use γ̂ to refer to couplings living in the polyhedron Π(α, β) ⊂ RM×N , while
we will reserve γ for plans as probability measures on Rd × Rd. The primal transport problem
(1.1) between ρX and µY is equivalent to

inf
γ̂∈Π(α,β)

⟨C(X,Y )|γ̂⟩. (3.2)

Given C ∈ RM×N , we define the dual polyhedra

D(C) :=
{
(ϕ, ψ) ∈ RM+N : ϕi + ψj ≤ Cij for all i = 1, ...M, j = 1, ...N

}
.

Then the dual transport problem (1.2) between ρX and µY is equivalent to

sup
ϕ,ψ∈D(C(X,Y ))

⟨ϕ|α⟩+ ⟨ψ|β⟩. (3.3)

Uniqueness of solutions in linear programming occurs when the cost vector to be maximised
(here −C for the primal or (α, β) for the dual) does not point towards a face of the polyhedron
to which it is orthogonal. The unique solution is then one of the vertices (extreme points) of
the polyhedron. This is illustrated in Figure 3.1. Thus, in the discrete case, uniqueness of the
primal and dual problems is understood by characterising the extreme points of the polyhedra
Π(α, β) and D(C).

The following lemma, due to [20], characterises the extreme points of the primal transport
polyhedra Π(α, β) ⊂ RM×N . This serves as a generalisation of the Birkhoff theorem for bi-
stochastic matrices, which corresponds to the case N =M and α, β uniform probability vectors.
The second half of the proof presented here can be found in [10, Chapter 8], the first half is
formulated with the results of Chapter 4 in mind.
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C γ̂⋆

Unique optimum

(single vertex)

C

γ̂⋆1

γ̂⋆2

Non-unique optimum

(optimal face)

Figure 3.1: Uniqueness vs non-uniqueness of the minimisers of ⟨γ̂|C⟩ depending on the direction
of −C.

Lemma 3.1. [20] Given γ̂ ∈ Π(α, β), define the bipartite graph G(γ̂) = (V,E(γ̂)) with V =
(xi)

M
i=1 ∪ (yj)

N
j=1 and

(xi, yj) ∈ E(γ̂) ⇐⇒ γ̂ij > 0. (3.4)

Then γ̂ ∈ Π(α, β) is an extreme point if and only if G(γ̂) contains no cycles (it is a disjoint
union of trees, often referred to as a forest).

Proof. Assume γ̂ is such that G(γ̂) has a cycle. Since no two x’s or y’s are connected, this is
of the form xi1 , yj1 , ..., xin , yjn , xi1 , such that γ̂ikjk > 0 and γ̂i1jn > 0 and γ̂ik+1jk > 0. Here we
choose n ∈ N to minimise the length of the chain

i1, j1, ..., in, jn, i1, (3.5)

so the cycle does not retrace itself. Set

ε := min

(
γ̂i1jn ,

n
min
k=1

γ̂ikjk ,
n−1
min
k=1

γ̂ik+1jk

)
.

Then γ̂ = 1
2 γ̂ε +

1
2 γ̂−ε where

(γ̂ε)ij :=


γ̂ij + ε i, j appears in the chain (3.5),

γ̂ij − ε j, i appears in the chain (3.5),

γ̂ij otherwise.

By construction, γ̂ε, γ̂−ε ∈ Π(α, β). Hence γ̂ is not an extreme point, since γ̂ε and γ̂−ε are
distinct.

Now assume the induced bipartite graph by γ̂ ∈ Π(α, β) is a forest. We show that there exists
no other γ̂0 ∈ Π(α, β) whose induced graph is a subgraph of that of γ̂ (recall that we are
considering our graph as an unweighted graph, only the pattern is important here). Since α
and β are strictly positive probability vectors, each vertex has degree at least 1. Since G(γ̂) is
a forest, there exists a vertex of degree 1 on the graph, without loss of generality, let it be y1,
and let (x1, y1) be the single edge connecting to y1. So that the right amount of mass arrives
at y1, it must be that γ̂11 = β1. Repeatedly applying this observation to degree 1 vertices on
the tree as we remove them, we see that a tree graph uniquely specifies the element of Π(α, β).
Thus, there can be no other γ̂0 ∈ Π(α, β) whose graph is a subgraph of G(γ̂). Consequently, if
γ̂ = 1

2 γ̂
− + 1

2 γ̂
+, then γ̂ = γ̂− = γ̂+ since G(γ̂−), G(γ̂+) are subgraphs of G(γ̂). Hence γ̂ is an

extreme point of Π(α, β).
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In [5, 4, 3], extreme points for dual transport polyhedra D(C)∩ {ϕ1 = 0} are also characterised
in terms of a bipartite graph with node sets corresponding to the support points X and Y .
(Here we fix the first coordinate arbitrarily, as otherwise there are no extreme points, with the
lowest-dimensional faces being lines.)

Lemma 3.2. [4, Lemma 1] Given (ϕ, ψ) ∈ D(C)∩{ϕ1 = 0}, define the bipartite graph G(ϕ, ψ) =
(V,E(ϕ, ψ)) with V = (xi)

M
i=1 ∪ (yj)

N
j=1 and

(xi, yj) ∈ E(ϕ, ψ) ⇐⇒ ϕi + ψj = Cij . (3.6)

Then (ϕ, ψ) is an extreme point of D(C) ∩ {ϕ1 = 0} if and only if G(ϕ, ψ) is connected.

Proof. Assume first that (ϕ, ψ) are such that G(ϕ, ψ) is connected. Then there exists a path from
each vertex starting from x1 (which represents ϕ1 = 0). By definition of G(ϕ, ψ), iterating along
any path in the graph 1 = i1, j1, i2, j2, ...jn in G(ϕ, ψ) we must have that ϕik+1

= Cik+1jk − ψjk ,
and ψjk = Cikjk−ϕik . Hence, for a connected graph, the values of (ϕ, ψ) are uniquely determined.
Let (ϕ−, ψ−), (ϕ+, ψ+) be such that (ϕ, ψ) = 1

2(ϕ
−, ψ−)+ 1

2(ϕ
+, ψ+). By definition of D(C), for

each i, j
ϕ−i + ψ−

j ≤ Cij and ϕ+i + ψ+
j ≤ Cij .

Hence (xi, yj) ∈ E(ϕ, ψ) if and only if it is in both E(ϕ−, ψ−) and E(ϕ+, ψ+); in other words
G(ϕ, ψ) = G(ϕ−, ψ−) ∩G(ϕ+, ψ+). Consequently, if G(ϕ, ψ) is connected, both G(ϕ−, ψ−) and
G(ϕ+, ψ+) are, and the same arcs are sufficient to connect them. It follows from the unique
determinacy property of connected graphs shown above that (ϕ, ψ) = (ϕ−, ψ−) = (ϕ+, ψ+), and
hence (ϕ, ψ) is an extreme point of D(C) ∩ {ϕ1 = 0}.

Assume now that (ϕ, ψ) are such that G(ϕ, ψ) are disconnected. The above argument establishes
that on each connected component of G(ϕ, ψ), the corresponding coordinates of ϕ and ψ are
fixed up to a constant. We will show that, pairwise, between different connected components
of G(ϕ, ψ), there is some flexibility (we can add a small constant to all the coordinates in
one component, while keeping the other components unchanged). This maximum amount of
flexibility will define a sort of distance between two components. Since the graph is finite,
choosing some component D not containing ϕ1, and taking the minimum distance between all
other components, we will be able to perturb all the values on this component slightly in each
direction whilst respecting the constraints of D(C)∩{ϕ1 = 0}. This will allow us to write (ϕ, ψ)
as a non-trivial convex combination, proving that they do not constitute an extreme point.

Forgetting briefly the constraint {ϕ1 = 0}, decompose G(ϕ, ψ) = ⊔rk=1Gk, where Gk = (Vk, Ek)
are the connected components of G(ϕ, ψ). Consider two components G0, G1. We consider all
the edges missing from G(ϕ, ψ) that could join G0 to G1, and see how much slack they have in
their constraint

Cij − ϕi − ψj > 0.

First, we consider all the vertices starting from the A side of G0 to the B side of G1. For k0 ̸= k1,
set

εϕ,ψ(Gk, Gl) := min
xi∈Vk
yj∈Vl

Cij − ϕi − ψj > 0, (3.7)

(Note this is not at all symmetric in Gk0 , Gk1) where the strict inequality comes from the fact
that we are taking two vertices from different components, so none of these edges can be in the
graph. Then for each coordinate (i0, j1) in (3.7), adding εϕ,ψ(G0, G1) to each ψj1 coordinate
and subtracting it from each ϕi0 coordinate preserves all constraints within each component,
as well as (G0, x) to (G1, y) edge constraints. Symmetrically, for each coordinate (i1, j0) in,
subtracting εϕ,ψ(G1, G0) from each ψj1 coordinate and adding it to each ϕi0 coordinate preserves
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all constraints within each component, as well as (G0, y) to (G1, x) edge constraints. Returning
now to our setting (ϕ, ψ) ∈ D(C) ∩ {ϕ1 = 0} with disconnected graph choose any connected
component Gl not containing ϕ1, then set

ε+ϕ,ψ = min
k=1,..,r
k ̸=l

εϕ,ψ(Gk, Gl) and ε−ϕ,ψ = min
k=1,..,r
k ̸=l

εϕ,ψ(Gk, Gl).

The above computations show that, keeping all the values of (ϕ, ψ) fixed on every component
apart from Gl, we can add ε+ to each ψ and subtract from each ϕ value while staying inside
D(C) ∩ {ϕ1 = 0}. Similarly, we can subtract ε− from each ψ and add it to each ϕ. Hence,
defining (ϕ+, ψ+) as the potential obtained by adding ε := min(ε+, ε−) to each ψ coordinate in
Gl and subtracting from each ϕ coordinate in Gl, and defining (ϕ−, ψ−) in the opposite manner
with respect to addition and subtraction by ε, we have

(ϕ, ψ) =
1

2
(ϕ+, ψ+) +

1

2
(ϕ−, ψ−).

Hence, we have written (ϕ, ψ) as a non-trivial linear combination of two elements ofD(C)∩{ϕ1 =
0}, and so it is not an extreme point.

Remark 3.3. The second half of the above proof involves quantitative calculations that are
essentially identical to those of [1, Theorem 3.9]. We will return to this connection in later
sections.

In [1], the authors also study the uniqueness of solutions to the fully discrete dual transport
problem. They also characterise uniqueness in terms of similar bipartite graphs as in Lemma 3.2.
Here, they arrive at what is (usually) the same graph, but instead, it is constructed implicitly
using the set of primal optimisers, combined with the compatibility condition (1.7).

Proposition 3.4. [1, Proposition 3.5 (ii)/Corollary 3.14] For γ̂ ∈ Π(α, β), define the bipartite
graph as in Lemma 3.1. Define the superposition of optimal graphs GΓ = (V,EΓ) where

EΓ :=
⋃

γ̂∈Π(α,β)
γ̂ optimal for (3.3)

E(γ̂).

Then the solutions of (3.3) are unique up to a constant if and only if GΓ is connected.

Condition (1.7) forces that for any dual optimisers (ϕ, ψ), GΓ ⊂ G(ϕ, ψ). [1, Proposition 3.6]
establishes the inverse direction GΓ = G(ϕ, ψ) when dual potentials are unique up to a constant.
Effectively, since in this case G(ϕ, ψ) is connected, if there were some edge in G(ϕ, ψ) \ GΓ, it
must belong to a cycle of G(ϕ, ψ). The reason for this is that the tree-structured sections of
G(ϕ, ψ) force all optimal plans supported there to have the same weights, so all edges of G(ϕ, ϕ)
not contained in a cycle must also lie in GΓ. But if there is some edge lying in a cycle of G(ϕ, ψ)
we can always take another optimal plan and permute some of the mass round the cycle as in
the proof of Lemma 3.1, to create an optimal plan giving mass to this edge, and hence the edge
is in GΓ. Thus, in this case GΓ = G(ϕ, ψ). In general, GΓ can be a strict subset of G(ϕ, ψ).
To construct such a case, take any primal and dual problem for which G(ϕ, ψ) has at least two
connected components, then add one edge to the graph joining the two components, by reducing
a Cij connecting them until it is equal to ϕi + ψj . Then no new optimal plans are created so
GΓ remains unchanged, but G(ϕ, ψ) just gained an edge.

We note that in [4], the authors distinguish between two types of vertices of dual transport
polyhedra, referred to as non-degenerate when G(ϕ, ψ) is a spanning tree, and degenerate when
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G(ϕ, ψ) contains a cycle. The degenerate case occurs precisely when we have non-uniqueness of
the primal problem; this fact can be seen as a consequence of Lemma 3.1.

To synopsise the discrete case: uniqueness of the primal problem occurs if and only if the
corresponding graph GΓ has no cycles, and uniqueness of the dual if and only if GΓ is connected.

3.2 The sets of optimal plans and potentials

We now view the discrete transport problem again through continuous rather than linear pro-
gramming language. As discussed, in general, we do not have uniqueness, so we are interested
in the solution set of minimisers. We define

Γc : (Rd)M × (Rd)N ⇒ P(R2d);

Γc(X,Y ) := arg min
γ∈Π(ρX ,µY )

∫
Rd×Rd

c(x, y)dγ(x, y), (3.8)

where ρX and µY are defined as in (3.1). We define similar sets for the Kantorovich potentials.
We will use the semi-dual formulation (1.6), which takes a special formulation as soon as one
of the measures is discrete. In general, we are only interested in the values of the potentials on
the support points X and Y , and so we can reduce to a finite-dimensional problem. Thus, the
semi-dual problem (1.6) between ρX and µY is equivalent to both of the following problems.

Φ(X,Y ) := argmax
ϕ∈RM

⟨ϕ|α⟩RM +

∫
X
ϕc(y|X)dµY (y), (3.9)

Ψ(X,Y ) := argmax
ψ∈RN

∫
X
ψc(x|Y )dρX(x) + ⟨ψ|β⟩RN , (3.10)

where the c-transforms are taken with respect to points in the support of the target X and Y :

ψc(x|Y ) := inf
j=1,...N

c(x, yj)− ψj , and ϕc(y|X) := inf
i=1,...M

c(xi, y)− ψi.

Problems (3.9) and (3.10) are referred to as the semi-discrete transport problem, which has been
the subject of numerous recent works, see [19, 23, 14, 25].

Remark 3.5. Due to symmetry, we give two definitions, as it is not clear which is more useful, or
if both are necessary (recall sometimes we want to fix X and perturb Y so our perturbations are
not necessarily symmetric). To avoid developing a dual theory unnecessarily, we will concentrate
on problem (3.9). Symmetric calculations apply to (3.10).

On one side of (3.9), we have a vector in RM , corresponding to the dual in the linear programming
formulation, and on the other side we have ϕc ∈ Cb(Y), corresponding to the measure theoretic
formulation. In this way, (3.9) will serve as a bridge between these two formulations, allowing
us to pass stability results from linear programming to functional analysis language. Then,
qualitative stability, Theorem 1.1, should allow us to take a limit of discrete measures to say
statements about more general optimal transport problems beyond the discrete case. For ease
of exposition, we fix the cost to be quadratic, c(x, y) = −⟨x|y⟩. In this case, (3.9) becomes

inf
ϕ∈RN

⟨ϕ|α⟩RM +

∫
Rd

ϕ∗(y)dµ(y). (3.11)

with Legendre transform ψ∗ : Rd → R defined by

ϕ∗(y|X) := sup
i=1,...,M

⟨y|xi⟩ − ϕi. (3.12)
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To keep notation light, where clear, we omit the dependence on X in the Legendre transform.
The function ϕ∗ : Rd → R is a finite supremum of hyperplanes, with one hyperplane y 7→
⟨y|xi⟩ − ϕi of gradient of xi corresponding to each point in the support of ρX . Thus ϕ∗ is
piecewise flat, and the region for which the hyperplane i is active in the sup (3.12) is called the
ith Laguerre cell of ϕ ∈ RM , denoted

Lagi(ϕ|X) =
{
y ∈ Rd : ⟨y|xi⟩ − ϕi ≥ ⟨y|xj⟩ − ϕj for all j = 1, ...,M

}
=
{
y ∈ Rd : xi ∈ ∂ϕ∗(y)

}
.

These cells have pairwise disjoint interiors, providing a decomposition of Rd. This definition does
not depend on µ, only on the points X ∈ (Rd)M . As (3.11) is a convex minimisation problem,
for each X,Y ∈ RN , Φ(X,Y ) is a convex set. We will give an explicit characterisation of Φ
as a finite intersection of certain half-spaces. This will allow us to study how Φ changes as we
perturb X and Y .

Lemma 3.6. For any vector of target positions Y ∈ (Rd)N , set

Si(X,Y ) := {y ∈ {yj}Nj=1 : there exists γ ∈ Γ(X,Y ) such that (xi, y) ∈ Supp γ}. (3.13)

Then
Φ(X,Y ) =

{
ϕ ∈ RN : Si(X,Y ) ⊂ Lagi(ϕ|X) for all i = 1, ...,M

}
.

Proof. By definition y ∈ Lagi(ϕ|X) if and only if xi ∈ ∂ϕ∗(y). Hence Si(X,Y ) ⊂ Lagi(ϕ|X) for
all i = 1, ...,M if and only if for any γ ∈ Π(ρX , µY ) optimal and any (xi, y) ∈ Supp γ, we have
xi ∈ ∂ϕ∗(y). But this is precisely saying that Supp γ ⊂ ∂ϕ∗. By the compatibility condition
(1.7), this is equivalent to ϕ ∈ Φ(X,Y ).

Proposition 3.7 (Characterisation of the set of dual potentials). Let ρX and µY be discrete
probability measures on Rd for some X ∈ (Rd)M and Y ∈ (Rd)N . Then Φ(X,Y ) is a convex
polyhedron in RM characterised by a finite intersection of half spaces, one for each pairing of
distinct points x, x′ ∈ {xi}Mi=1. Explicitly,

Φ(X,Y ) =
⋂
i,j

Hij(X,Y ), (3.14)

where
Hij(X,Y ) :=

{
ϕ ∈ RM : ⟨ϕ|ei − ej⟩ ≤ hij(X,Y )

}
, (3.15)

ei are basis elements of RM , and

hij : (Rd)M × (Rd)N → R; X,Y 7→ inf
y∈Si(X,Y )

⟨xi − xj |y⟩.

Proof. We will show that

ϕ ∈
⋂
i,j

Hij ⇐⇒ Si ⊂ Lagi(ϕ) for all i,

which implies the result by Lemma 3.6. We have Si ⊂ Lagi(ϕ) if and only if for all y ∈ Si and
all j = 1, ...M ,

⟨xi|y⟩ − ϕi ≥ ⟨xj |y⟩ − ϕj . (3.16)

This is equivalent to asking that for all j = 1, ...,M ,

⟨ϕ|ei − ej⟩RM ≤ inf
y∈Si

⟨xi − xj |y⟩Rd = hij .
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Hence ϕ ∈ Hij for all j ̸= i, and so

ϕ ∈
M⋂
j=1

Hij ⇐⇒ Si ⊂ Lagi(ϕ).

Finally, we want Si ⊂ Lagi(ϕ) for any i = 1, ..,M . Hence, we take the intersection over i, giving
the characterisation (3.14).

Remark 3.8. We have two parallel half-spaces with gradient ei − ej in RM . Their intersection
{ϕ : ϕi − ϕj ∈ [−hji, hij ]} is all the admissible intervals of the relative vertical displacements
between the hyperplane associated to xi and that associated to xj , which preserve Si ⊂ Lagi(ϕ)
and Sj ⊂ Lagj(ϕ). Each of the hyperplanes defining Hij is orthogonal to the vector (1, 1, ..., 1),
and so the optimal set is symmetrical in this direction. This is consistent with the fact that
potentials are only ever defined up to a constant. What matters are the relative heights of
the hyperplanes defining ϕ∗, as these decide the cell boundaries. If two hyperplanes are both
translated vertically by the same amount, their intersection set remains the same, so if their
cells are adjacent, the boundary is preserved.

The compatibility condition (1.7) forces that at y ∈ SuppµY the subgradient of any optimal
ϕ∗ : Y → R must contain all x such that (x, y) ∈ Supp γ for any γ ∈ Γ(X,Y ). We then have the
liberty to choose any convex function whose subdifferential contains these values (it can always
also contain more values too - (1.7) demands containment, not equality). If µY is a very fine
mesh, then the subgradients of ϕ∗ are specified on a very dense set, so there is less flexibility
in choice. If ρX is a very fine mesh compared to µY , then for ϕ∗∗ : X → R, many y will lie in
the subdifferentials of multiple xi. This also leaves little choice, as we are forced to interpolate
affinely between any such pair of points so that the value can be in the subgradient of both.
Many points xi ∈ Supp ρ will send their mass split to one y, and so for any potential ϕ∗, these
y should lie at the intersection of many cells rather than just inside a single cell.

Remark 3.9 (Extension to cost c). The extension of this to cost c simply uses generalised
Laguerre cells

Lagc(ϕ) =
{
y ∈ Rd : c(xi, y)− ϕi ≤ c(xj , y)− ϕj ∀j = 1, ...M

}
.

The compatibility condition demands Sci ⊂ Lagci (ϕ) where S
c
i is defined similarly to the quadratic

case, using Γc instead. The hyperplane constraints are given explicitly using hcij defined by

hcij : (Rd)M × (Rd)N → R; X,Y 7→ sup
y∈Sc

i (X,Y )
c(xi, y)− c(xj , y).

ϕ ∈ RM is optimal if an only if for all i = 1, ...M and j = 1, ...N ,

⟨ϕ|ei − ej⟩ ≥ hcij(X,Y ).

Example 3.10. In R2, let ρ =
∑4

i=1
1
4δxi and µ =

∑3
j=1

1
3δyj , where {xi}

4
i=1 and {yj}3j=1 are as

in Figure 3.2. The points on the left picture of Figure 3.2 correspond to the cells (or hyperplanes)
in the centre picture, and vice versa. Non-uniqueness of the primal problem occurs precisely
when there is a non-trivial cycle of the form point 1, hyperplane 1, point 2, hyperplane 2, · · ·
hyperplane n, point 1, where each point lies on the boundary of the hyperplanes it is next to in
the cycle. Here, there exist three such cycles in GΓ, given by

(x1, y2, x2, y1, x1), (x1, y2, x3, y3, x1), and (x1, y3, x3, y2, x2, y1, x1).
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Figure 3.2: Laguerre cell decompositions of the source (left) and target (middle) domains induced
by an optimal dual vector, and corresponding graph GΓ (right).

Remark 3.11. For c(x, y) = ∥x − y∥2 and a suitably chosen X ∈ (Rd)M , we probably do not
need all pairwise comparisons of ϕi to ϕj . For example, if x1 = (1− t)x0+ tx2 for some t ∈ (0, 1),
then it suffices to compair pairwise the x1 and x0 cell, then pairwise compare the x1 and x2 cell.
No comparison between the x0 and x2 cells is required, as this is an implicit consequence of the
other two comparisons already being correct. This observation should likely aid study stability
where, for example, with M = kd and X ∈ (Rd)M corresponds to a 1/k mesh grid over the unit
cube [0, 1]d, for simplicity with α a uniform probability vector. Then it should be sufficient to
perform comparisons between each point and all of its “neighbours” - i.e. those points for which
each coordinate entry differs by either 1/k or 0. In this way, even taking an arbitrarily small
mesh (large k), each point should need only a finite number of comparisons 2d − 1.
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4 Perturbation of support positions

We now investigate how solutions to discrete optimal transport problems change when the
support points X and Y are perturbed. This leads naturally to questions of stability for both
primal and dual formulations.

4.1 Discussion on how to use linear programming connections

Our principal long-term goals are the following:

Problem 2. How does Γ(X,Y ) change as we perturb X and Y ? To what extent can we say that
if X,X ′ and Y, Y ′ are close (and hence W2(ρX , ρX′) and W2(µY , µY ′) are small), then Γc(X,Y )
and Γc(X

′, Y ′) are quantitatively close with respect to an appropriate metric? We would like
results of the form

W2(γX0,Y0 , γX1,Y1) ≤ C
(
W2(ρX0 , ρX1) +W2(µY0 , µY1)

)q
+ E(X,Y, α, β) (4.1)

for all γXi,Yi ∈ Γ(Xi, Yi), where E(X,Y, α, β) is an error term to be understood depending on
the structure of the measures.

If we fix X and just vary Y with all points staying inside the same compact set, can we arrive
at an error E(X,α) not depending on Y , which is, for example, very small when ρX represents
a very fine mesh discrete approximation of a regular absolutely continuous measure? Note here
that in the spirit of known results in the absolutely continuous case, we should consider some
constraint that all the coordinates of Y live inside the same compact set Y, and the error should
be allowed to depend on Y also.

In general, quantitative stability cannot hold without some form of error term E . Sometimes
this error can be large, as the following example demonstrates.

Example 4.1. Let ρε = 1
2δ(−1,ε) +

1
2δ(1,−ε) and µ = 1

2δ(0,1) +
1
2δ(0,−1), see Figure 4.1. For

ε ̸= 0, there is a unique optimal plan γε, but at ε = 0 we have non-uniqueness, with any convex
combination of the two limiting cases giving an optimal plan. For ε > 0, W2(γε, γ−ε) = 2

ε > 0

(0, 1)

(0,−1)

(−1, ε)

(1,−ε)

ε = 0 ε < 0

(0, 1)

(0,−1)

(−1,−ε)
(1, ε)

Figure 4.1: Optimal plans between ρε and µ.

while W2(ρε, ρ−ε) = 2ε. The size of the jump discontinuity is limε→0W2(γε, γ−ε) = 2, which is
precisely the Wasserstein diameter of the set of optimal plans between ρ0 and µ. This is the
worst it can be, as a consequence of qualitative stability.
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Problem 2 is related to the stability of the linear programs (3.2) and (3.3), with respect to
perturbations of C(X,Y ). However, the geometry of linear programming; i.e. Π(α, β) ⊂ RM×N

equipped with some norm, all of which are equivalent, and the geometry of (P2(Rd × Rd),W2)
are very different. In particular, in (3.2), all the geometric information X and Y concerning the
ambient space Rd is embedded directly into the cost vector C(X,Y ), and bears no relation to
the geometry of the polyhedron Π(α, β). Consider the mapping

γ : (Rd)M × (Rd)N ×Π(α, β) → P2(Rd × Rd); (X,Y, γ̂) 7→ γ(X,Y ),

where we denote

γ(X,Y ) :=
M∑
i=1

N∑
j=1

γ̂ijδxi,yj ∈ Π(ρX , µY ).

First, assume we are comparing two different transport plans in Π(ρX , µY ). Two distinct cou-
plings γ̂0, γ̂1 ∈ Π(α, β) have a fixed Euclidean distance ∥γ̂0 − γ̂1∥2 > 0 in the polytope, whilst
W2(γ̂0(X,Y ), γ̂1(X,Y )) can be made arbitrarily large or small by varying X and Y . We note
that the l1 norm on Π(α, β) ⊂ RM×N corresponds to the total variation:

∥γ̂0 − γ̂1∥1 = ∥γ0(X,Y )− γ1(X,Y )∥TV

In general, however, we want to compare two plans, one in Π(ρX , µY ) and one in Π(ρX′ , µY ′),
for different X,X ′ and Y, Y ′. In this case, neither W2(γ̂0(X,Y ), γ̂1(X

′, Y ′)) nor γ0(X,Y ) −
γ1(X

′, Y ′)∥TV are represented by the geometry of Π(α, β). It is unclear, then, that the quan-
titative stability results in linear programming can be directly applied to the primal problem
to deduce those of a functional analysis flavour. Regardless, the linear programming formula-
tion will give us some qualitative insight into how optimal plans deform as we vary X and Y
continuously.

It is natural to ask an analogue of Problem 2 for the stability of the set of dual optimisers
Φ. This is relevant both for independent interest as well as that it may hopefully allow better
understanding of Problem 2.

Problem 3. How do Φc(X,Y ) and Ψc(X,Y ) change as we perturb X and Y ? If the supports
are close so that ∥X −X ′∥, ∥Y − Y ′∥ ≪ 1 (and hence W2(ρX , ρX′) and W2(µY , µY ′) are small),
are Φc(X,Y ) and Φc(X

′, Y ′) quantitatively close in some sense? We would like results of the
form

dH,∥·∥ϕ(Φc(X,Y ),Φc(X
′, Y ′)) ≤ C

(
W2(ρX0 , ρX1) +W2(µY0 , µY1)

)q
+ E (4.2)

where dH,∥·∥ϕ is the Hausdorff distance between sets on RN with respect to a choice of norm
∥ · ∥ϕ, and E is an error term to be understood based on the structure of the measures.

A direct comparison between vectors ϕ ∈ Φ(X,Y ) and ϕ′ ∈ Φ(X ′, Y ′) for some norm on RM has
no direct interpretation if X ̸= X ′. If, however, X = X ′, then norm distances do have a useful
interpretation. For example

∥ϕ∥RM ,α :=

M∑
i=1

αi|ϕi|2,

so that if X = X ′, then for ϕ ∈ Φ(X,Y ) and ϕ′ ∈ Φ(X,Y ′) we have

∥ϕ− ϕ′∥RM ,α = ∥ϕ∗∗ − ϕ
′∗∗∥L2(ρ),

where here ϕ∗∗ : X → R corresponds to the double Legendre transform with respect to X then
Y , so that ϕ∗∗ restricted to X returns the vector ϕ. Thus, a norm on RN corresponds directly
to an L2(ρ) distance between continuous potentials which is amenable to qualitative limits.
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Problem 4. Use the understanding gained from Problem 2 and 3 to take qualitative limits of
(4.1) and (4.2) to say things about general transport problems beyond the discrete case. In this
way, a sequence of linear programs which may a priori seem unrelated can correspond to weakly
converging marginal sequences of discrete measures for which (4.1) may hopefully be stable.

Given that the norm structure on D(C) is much more useful than that of Π(α, β), to approach
Problem 2 it seems reasonable to first understand component wise effects on ϕ ∈ Φ(X,Y ) of
perturbing Y through the explicit characterisation given in Proposition 3.7. The ϕi values
correspond to the translations of hyperplanes with gradient xi, casting this over the target
domain we could hope to understand how the Laguerre cells induced on the target domain evolve.
Since there should be the same amount of mass in each cell, we could use this information to
construct a coupling between two different transport plans with the same marginals, giving an
estimate on W2(γX,Y , γX,Y ′).

4.2 Structure of primal optimisers under deformations

In this section, we provide a qualitative explanation of how the set of optimisers Γc(X,Y )
defined in (3.8) deforms under Perturbations of X and Y . Intuitively, the idea is as follows: if
we perturb the positions of each of the masses continuously such that at each point in time, the
transport problem has a unique solution, then the structure of the optimal plan remains the
same. For the structure of the optimal plan to change, it must be that at some point, one way
of transporting becomes better than another, and at the point of this change, the before plan
and after plan must have the same cost, contradicting uniqueness.

We first present a direct proof in the language of measure-theoretic optimal transport using
the c-cyclical monotonicity (1.8). We then describe how this connects to uniqueness in linear
programming through the characterisation of extreme points of Π(α, β), Lemma 3.1.

Definition 4.2 (Glue-composition of transport plans). Let ρ, µ0, µ1 be probability measures on
Rd and consider transport plans γ0 ∈ Π(ρ, µ0) and π ∈ Π(µ0, µ1). Then γ1 ∈ Π(ρ, µ1) is said
to be a glue-composition of γ0 and π if there exists a measure η ∈ Π(ρ, µ0, µ1) with p12#η = γ0,
p23#η = π and p13#η = γ1. Here pij represents the canonical projection onto the ith and jth
coordinates. We denote by

γ0 ◦ π ⊂ Π(ρ, µ1)

the set of all possible glue-compositions of γ0 and π. There always exists at least one way to
glue transport plans with a common marginal, since one can always take γ0,y ⊗ πydµ0(y) where
γ0,y and πy are disintegrations of γ0 and π in the second/first coordinates respectively, see [30,
Lemma 5.5] for more details. Unlike the composition of maps, glue-compositions need not be
unique, see Example 4.3.

Example 4.3 (Non-uniqueness of glueing). Consider the transport problem illustrated in Figure
4.2 between ρX and µY (t) where

α = (3/4, 1/4), β = (1/2, 1/4, 1/4),

X = (A,B), Y0 = (C,D,D), Y1 = (E,F,G), Y (t) = (1− t)Y0 + tY1.

There are multiple glue-compositions of the optimal plan γ ∈ Π(ρX , µY0) with the optimal plan
πt ∈ Π(µY0 , µY (t)). Only one of them is the optimal plan for quadratic cost between ρX and
µY (t). Any convex combination of the glue compositions is also a glue composition. Here, there
are multiple ways to glue, but the optimal γ(t) ∈ Π(ρX , µY (t)) (middle diagram) is unique.
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ρX

A

B

µY0

C

D

µY (t)

(1−t)C + tE

(1−t)D + tF

(1−t)D + tG

µY1

E

F

G

ρX

A

B

µY (t)

(1−t)C + tE

(1−t)D + tF

(1−t)D + tG

ρX

A

B

µY (t)

(1−t)C + tE

(1−t)D + tF

(1−t)D + tG

Figure 4.2: Measures ρX , µY0 , µY (t) and µY1 and couplings between them (left); and two potential
glue-compositions of γ0 and πt (middle and right).

Theorem 4.4 (Structure of discrete plans along trajectories preserving uniqueness). Let c :
Rd × Rd → R+ be continuous. Let X : [0, 1] → (Rd)M and Y : [0, 1] → (Rd)N be continuous
curves such that

(i) For each t ∈ (0, 1) and any distinct indices i ̸= j, xi(t) ̸= xj(t) and yi(t) ̸= yj(t).
(ii) For each t ∈ [0, 1] solutions to the c-cost transport between ρX(t) and µY (t) are unique.

Then there exists γ̂ ∈ Π(α, β) such that

Γc(X(t), Y (t)) =


M∑
i=1

N∑
j=1

γ̂ijδxi(t),yj(t)

 for all t ∈ [0, 1],

so that the “same” plan is the unique optimal plan for all t ∈ [0, 1]. In other words, given the
optimal plan for some s ∈ (0, 1), the unique optimal plan for each other t ∈ [0, 1] is a glue-
composition (note there can be multiple glue compositions here, but only one can be optimal
since we assume uniqueness) of πρts ◦ γ(s) ◦ π

µ
st where

πρts :=
M∑
i=1

αiδxi(t),xi(s) ∈ Π(ρX(t), ρX(s)) and πµst :=
M∑
i=1

βiδyi(s),yi(t) ∈ Π(µY (s), µY (t)).

Proof. Fix some s ∈ (0, 1) and let γ(s) be the unique optimal plan between ρX(s) and µY (s) for
cost c, written in the form

γ(s) =
M∑
i=1

N∑
j=1

γ̂ij(s)δxi(s),yj(s). (Here some γ̂ij(s) may be zero.) (4.3)

Here a priori, the γ̂ij(s) depend on the choice of s. We want to show that they are independent
of s, so that the same γ(t) is optimal for all t ∈ [0, 1], rather than just t = s. Let I = {(i, j) :
γ̂ij(s) > 0}, then for t ∈ [0, 1], set

γ(t) =
∑

(i,j)∈I

γ̂ij(s)δxi(t),yi(t).

We will call a permutation σ of I non-trivial if there exists (i, j) ∈ I with (i, σ(i, j)2) /∈ I, where
σ(i, j)2 denotes the second coordinate of the image of the pair of indices under σ. For each non
trivial permutation σ, we define

∆σ(t) =
∑

(i,j)∈I

c
(
xi(t), yσ(i,j)2(t)

)
−
∑

(i,j)∈I

c
(
xi(t), yj(t)

)
.
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This function quantifies the optimality gap in the c-cyclical monotonicity criterion (1.8) between
Supp γ(s) and Supp γ(s) permuted by σ. By uniqueness at t = s, c-cyclical monotonicity (1.8))
tells us that for every non-trivial σ, ∆σ(s) > 0. We define

∆(t) := min
σ non-trivial

∆σ(t),

which quantifies the smallest optimality gap to γ(s) by other couplings. As a finite infimum of
continuous functions, ∆ is continuous, and ∆(s) > 0. Set

t+ = inf {t ≥ s : ∆(t) = 0} and t− = sup {t ≤ s : ∆(t) = 0} .

We will prove that it cannot be that t+ ∈ (s, 1) or t− ∈ (0, s), and hence γ(t) is optimal for all
t. Assume t− ∈ (0, s), we will arrive at a contradiction. By definition of ∆, there exists σ− such
that ∆σ−(t−) = 0 and ∆σ(t

−) ≥ 0 for all other σ. Thus, at t = t−, by (i) and the non-triviality
of σ−, setting ε = min(i,j)∈I γ̂ij > 0, the plan

γ̃t− := γ(t−)− ε
∑

(i,j)∈I

δxi(t−),yi(t−) + ε
∑

(i,j)∈I

δxi(t−),yσ∗(i,j)2 (t
−)

is distinct from γ(t−), whilst having the same transport cost. By definition of t− as a supre-
mum/infimum, both plans are optimal, contradicting the uniqueness assumption. A symmetric
argument applies to t+. Thus, ∆(t) > 0 for all t ∈ (0, 1), and γ(t) is optimal for all t ∈ [0, 1].

To explicit the glueing structure, for s ∈ (0, 1) and t ∈ [0, 1] consider the measure

η(s, t) :=
M∑
i=1

N∑
j=1

γ̂ijδxi(t),xi(s),yj(s),yj(t) ∈ Π(ρX(t), ρX(s), µY (s), µY (t)). (4.4)

It follows that

p12#η(s, t) = πρts; p23#η(s, t) = γ(s); and p34#η(s, t) = πµst

and
p14#η(s, t) = γ(t) ∀t ∈ [0, 1].

Thus, we have shown that the optimal plan over Π(ρt, µt) is given by glue composition, supported
by the measure η(s, t).

Remark 4.5. The connection between Theorem 4.4 and the linear programming formulation is
made clear by the characterisation of extreme points of Π(α, β), Lemma 3.1. Since the weight
vectors α ∈ RN and β ∈ RM are fixed, varying X and Y corresponds to varying the direction of
the cost vector C(X,Y ) inside Π(α, β). So long as we move C(X,Y ) in a way which preserves
non-orthogonality to the face of Π(α, β) in the direction −C, we retain uniqueness, and the
same vertex (and hence “same” plan) is optimal. If at some point −C(X,Y ) is orthogonal to
a face, this entire face will be optimal (non-uniqueness). One of the vertices on this face must
necessarily be the unique optimal vertex from which we arrived (this is qualitative stability/upper
semicontinuity). When we are on the interior of this face, the graph G(γ̂) has cycles, which
correspond to multiple possible permutations of the support being optimal (we can construct
multiple optimal plans à la c-cyclical monotonicity). One cannot perturb C continuously such
that we have uniqueness all along the trajectory, with a different vertex γ̂1 ∈ Π(α, β) optimal at
the end compared to γ̂0 at the beginning: If

⟨γ̂0|C(0)⟩ > ⟨γ̂1|C(0)⟩ and ⟨γ̂1|C(1)⟩ > ⟨γ̂0|C(1)⟩,
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then by continuity of C(t), the intermediate value theorem tells us there exists t ∈ [0, 1] with

⟨γ̂0|C(t)⟩ = ⟨γ̂1|C(t)⟩ =⇒ ⟨⟨γ̂0 − γ̂1|C(t)⟩ = 0.

Thus C(t) is orthogonal to the 1 dimensional edge connecting γ̂0 and γ̂1.

There is, however, no direct equivalence between the uniqueness of the measure-theoretic and
linear programming formulations. If for some i0, i1 or j0, j1 we have xi0 = xi1 or yj0 = yj1 , then
we have non-uniqueness of the Linear program (3.2) whilst the measure theoretic problem (3.8)
could retain uniqueness. Thus, we can pass from one vertex to another being optimal in Π(α, β)
whilst Γ(t) remains a singleton. This is illustrated in the example below.

Example 4.6 (Intersecting particles). For interpolations X(t) = (1 − t)X0 + tX1 and Y (t) =
(1− t)Y0 + tY1 that correspond to quadratic geodesic interpolations in the sense of Remark 4.8,
the non-intersecting particle assumption (i) is guaranteed. Without this assumption, consider

α = β = (1/2, 1/2),

X = (A,B), Y0 = (C,D), Y1 = (F,E),

as illustrated in Figure 4.3. We retain uniqueness all along the trajectory, but after t = 1/2
when y1(t) = y2(t), the glueing no longer corresponds to the optimal coupling.

ρX

A

B

µY (0.2)µY0

C

D

µY1

E

F

ρX

A

B

µY (0.7)µY0

C

D

µY1

E

F

Figure 4.3: Optimal couplings between ρX and µY (t) for t = 0.2 and t = 0.7.

Lemma 4.7. Under the hypotheses of Theorem 4.4, let X(t) and Y (t) be of the form X(t) =
(1 − t)X1 + tX2, Y (t) = (1 − t)Y1 + tY2 for Xi ∈ (Rd)M and Yi ∈ (Rd)N . Then there exists a
glueing measure η(0, 1) ∈ Π(ρX1 , ρX0 , µY0 , µY1) which describes all optimal plans between ρX(t)

and µY (t) simultaneously.

Proof. Recalling (4.4) which defines η(s, 1) for s ∈ (0, 1), we set

η(0, 1) := lim
s→0+

η(s, 1) ∈ Π(ρX1 , ρX0 , µY0 , µY1)

where the limit is in the sense of weak convergence since X(s) → X0 and Y (s) → Y0 are
continuous. Explicitly, (4.4) tells us that

η(0, 1) =
M∑
i=1

N∑
j=1

γ̂ijδx1i ,x0i ,y0j ,y1j
∈ Π(ρX(t), ρX(s), µY (s), µY (t))

where γ̂ ∈ Π(α, β) is the vertex corresponding to optimality for s ∈ (0, 1) in Theorem 4.4. Then
since xi(t) = (1− t)x0i + tx1i and similarly for Y (t), the optimal plan γ(t) ∈ Γ(X(t), Y (t)) is

γ(t) = (tx1 + (1− t)x0, (1− t)y0 + ty1)#η(0, 1) for all t ∈ [0, 1].
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Remark 4.8. The reason why we must define η(0, 1) delicately is that in (i) we do not assume
the coordinates are distinct at s = 0. Thus, there may be multiple ways to glue, only one of
which will give the optimal plan by our uniqueness assumption. Taking the limit down from
s > 0 ensures we select the right glueing by qualitative stability. The reason we prove the result
with these slightly more general hypotheses (particles can intersect at t = 0, 1) is explained
below.

Take couplings in πρ ∈ Π(ρX0 , ρX1) and πµ ∈ Π(ρY0 , ρY1). Let M = #Suppπρ and N =
#Suppπµ, then let each coordinate of X0, X1 correspond to a point in in Suppπρ with

αi = πρ((x0i , x
1
i )) and βj = πµ((y0j , y

1
j ))

for each distinct pair of points x0, x1 ∈ Suppπρ and y0, y1 ∈ Suppπµ. If πρ and πµ are chosen
to be optimal for p cost with p > 1, then the interpolations X(t) = (1 − t)X0 + tX1 and
Y (t) = (1 − t)Y0 + tY1 correspond to Wp geodesic interpolations, and in fact all Wp geodesics
are of this form, see [30, Chapter 5].

ρt = ((1− t)x0 + tx1)#π
ρ and µt = ((1− t)y0 + ty1)#π

µ.

Thus, we retain the slight generality of allowing particles to intersect at t ∈ {0, 1} in the
statement of Theorem 4.4: in general transport plans will split mass on departure and arrival,
and we would like these interpolations to be covered by the theorem.

Proposition 4.9. Assume that X(t) = (1 − t)X0 + tX1 and Y (t) = (1 − t)Y0 + tY1. Let
c(x, y) = ∥x−y∥p with p > 1. Then Γ(t) is piecewise constant, with finitely many discontinuities.
(Note here we make no assumptions on unicity or particle intersections.)

Proof. In the proof of Theorem 4.11, it is clear that for each t, Γ(X(t), Y (t)) corresponds pre-
cisely to the set of permutations σ of support points I = {(i, j) : γ̂ij > 0} for which

t 7→
∑

(i,j)∈I

∥∥∥(1− t)x0i + tx1i − (1− t)y0σ(i,j)2 + ty1σ(i,j)2

∥∥∥p (4.5)

is minimal when compared with the value for each other permutation. By Appendix, Lemma
A.1, functions of the above form are analytic except at most finitely many points, and so any
two functions of the form (4.5) have a finite number of intervals of intersection (some of these
could be real intervals, and others just points). Hence, the set of maximising permutations can
only change a finite number of times, which establishes the statement.

Lemma 4.10. Let c(x, y) = ∥x − y∥p with p > 1. Assume that X(t) = (1 − t)X0 + tX1

corresponds to a Wp geodesic in the sense of Remark 4.8. Then X(t) satisfies the non-crossing
particle assumption (i).

Proof. This is a straightforward consequence of c-monotonicity and strict convexity, following an
argument very similar in flavour to [30, Theorem 2.9]. Assume that (x0, x1), (z0, z1) ∈ Suppπρ,
where πρ ∈ Π(ρX0 , ρX1) is the p cost optimal plan along which X(t) is supported, in the sense
of Remark 4.8. Let

xt = (1− t)x0 + tx1 = x0 + tvx and yt = (1− t)z0 + tz1 = z0 + tvz,

where vx = x1 − x0 and vz = z1 − z0. By p-cost cyclical monotonicity,

∥x0 − x1∥p + ∥z0 − z1∥p ≤ ∥z1 − x0∥p + ∥z0 − x1∥p. (4.6)
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Assume there exists t ∈ (0, 1) such that

x(t) = (1− t)x0 + tx1 = (1− t)z0 + tz1 = z(t). (4.7)

Then for this t,
z1 − x0 = z1 − z(t) + x(t)− x0 = (1− t)vz + tvx.

and similarly z0 − x1 = tvz + (1 − t)vx. If vz = vx, then (4.7) forces that x0 = z0 and x1 = z1.
Thus, assuming vz ̸= vx, By strict convexity of ∥ · ||p,

∥(1− t)vz + tvx∥p + ∥tvz + (1− t)vx∥p <(1− t)∥vz∥p + t∥vx∥p + t∥vz∥p + (1− t)∥vx∥p (4.8)

=∥x0 − x1∥p + ∥z0 − z1∥p. (4.9)

Combining the strict inequality above with (4.6) gives a contradiction, and so there can exist
no such t ∈ (0, 1) intersection point.

The qualitative structural result Theorem 4.4 allows for the following quantitative result.

Theorem 4.11 (Stability of plans under uniqueness). For the p cost with 1 < p < ∞, let
ρ0, ρ1, µ0 and µ1 be discrete measures in Rd. Let γ0 ∈ Π(ρ0, µ0) and γ1 ∈ Π(ρ1, µ1) be optimal
plans. Set (ρt)t∈[0,1] and (µt)t∈[0,1] as Wp geodesics connecting ρ0 to ρ1 and µ0 to µ1. Assume
for each t ∈ [0, 1] that the Wp transport problem over Π(ρt, µt) has a unique solution. Then

W p
p (γ0, γ1) ≤ Cp(W

p
p (ρ0, ρ1) +W p

p (µ0, µ1)).

where Cp = max(1, 2
p
2
−1).

Proof. Let πρ, πµ be the plans supporting the geodesics ρt and µt, in the sense of Remark 4.8.
Since πρ, πµ are optimal, the non-intersecting particle assumption (i) is satisfied due to Lemma
4.10, so apply Theorem 4.4. Hence γ1 has the structure

γ1 = πρ ◦ γ0 ◦ πµ.

Let η ∈ Π(ρ1, ρ0, µ0, µ1) be the corresponding glueing measure, so that p12#η = πρ, p23#η = γ0,
p34#η = πµ and p14# = γ1. Then η defines a coupling between γ0 and γ1 so that

W p
p (γ0, γ1) ≤

∫
R4d

∥(x0, y0)− (x1, y1)∥pdη(x1, x0, y0, y1)

≤Cp
∫
R4d

∥x0 − x1∥p + ∥y0 − y1∥pdη(x1, x0, y0, y1)

=Cp

(∫
R2d

∥x1 − x0∥pdπρ(x1, x0) +
∫
R2d

∥y0 − y1∥pdπµ(y0, y1)
)

=Cp(W
p
p (ρ1, ρ0) +W p

p (µ0, µ1)).

Remark 4.12. The distances between plans and between marginals are actually comparable
under these assumptions, since we always have the reverse inequality as a consequence of Propo-
sition 1.3. In the case p = 2, cp = Cp = 1 so that W 2

2 (γ0, γ1) =W 2
2 (ρ0, ρ1) +W 2

2 (µ0, µ1).
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5 Uniqueness of continuous Kantorovich po-
tentials

In this chapter, we study the uniqueness properties of the continuous dual problem (1.2). In
general, optimisers to (1.2) or (3.3) are at best unique up to a constant, since given any (ϕ, ψ)
admissible, (ϕ + λ, ψ − λ) is also admissible for any λ ∈ R and has the same cost. We provide
what is, to our knowledge, the first dual uniqueness criterion applicable when both measures
are concentrated on lower-dimensional subsets of Rd. We then use this characterisation to give
a combinatorial, graph-based characterisation of uniqueness akin to Lemma 3.2 and Proposition
3.4.

5.1 Literature review

We begin by reviewing the literature on the uniqueness of the dual problem. As discussed in
Chapter 3, the uniqueness of the discrete primal and dual problems is understood by character-
ising the extreme points of the respective polyhedra. Lemma 3.1 and Lemma 3.2 describe these
in terms of a bipartite graph between source and target support points [6, 1]. Uniqueness of the
primal problem occurs if and only if the corresponding graph GΓ has no cycles, and uniqueness
of the dual occurs if and only if GΓ is connected. We also mention [27], which arrives at an es-
sentially equivalent graph theoretic criterion for dual potentials in the quadratically regularised
discrete problem, as well as giving a quantitative description akin to [1, Theorem 3.9].

We now turn to the uniqueness of the continuous dual problem (1.2). The following is known
classically.

Proposition 5.1. [30, Proposition 7.18] Let X and Y be compact sets in Rd. Assume that
Supp ρ is the closure of a connected open set. Let c ∈ C1(X × Y). Then optimisers to the dual
problem (1.2) are unique up to a constant.

Two recent papers [32, 35] have approached the uniqueness of the continuous dual problem.
Neither explicitly states a bipartite graph theoretic formulation, but both give results which
are of this flavour. We also mention [27], which establishes an analogue of Proposition 5.1 in
the quadratically regularised case. In [35, Theorem 4.5], the authors characterise uniqueness
under the assumption Supp ρ = cl(int(Supp ρ)), using what amounts to a bipartite graph-like
connectedness condition, which is asymmetric in ρ and µ. One set of nodes is chosen to be the
interiors of the connected components of ρ, while the other is simply the connected components
of µ. The proof technique essentially relies on the same machinery as Proposition 5.1 and
the assumptions on the cost are the same. This result covers a large class of cases, but by
construction, it is not symmetric in ρ and µ; all information related to connected components
of Supp ρ which are not equal to the closure of their interior is lost.

In [32], the authors also consider the decomposition of Supp ρ and Suppµ into connected com-
ponents, which we denote by (Ai)i∈I ⊂ 2X and (Bj)j∈J ⊂ 2Y respectively. Here we note that
the index sets I and J need not be finite; they may be countably infinite.

It is natural here, given γ ∈ Π(ρ, µ), to construct a bipartite graph G(γ) = (V,E(γ)) analogous
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to the discrete case. Here V = (Ai)i∈I ∪ (Bj)j∈J , and

(Ai, Bj) ∈ E(γ) ⇐⇒ γ(Ai ×Bj) > 0.

Observe that there can exist Ai with ρ(Ai) = 0 and Bj with µ(Bj) = 0 when these components
are limit sets of points from other components, see Example 5.12.

In [32], the authors establish uniqueness under a hypothesis they refer to as non-degeneracy ;
that there exist no subsets of indices I ′ ⊂ I and J ′ ⊂ J such that

0 < ρ(∪i∈I′Ai) = µ(∪j∈J ′Bj) < 1. (5.1)

In fact it is much stronger, it forces that for any γ ∈ Π(ρ, µ), the graph Gγ is connected. To see
this, take any γ ∈ Π(ρ, µ) and assume there exist at least two distinct connected components
of Gγ , choose one, and set I ′ and J ′ to be all the indices of vertices corresponding to this
component. By definition of Gγ , for any i ∈ I ′ and j /∈ J ′, γ(Ai, Bj) = 0 and similarly for i /∈ I ′

and j ∈ J ′. Consequently

ρ(∪i∈I′Ai) = γ(∪i∈I′Ai × Y) = γ(∪i∈I′Ai × ∪j∈J ′Bj) = γ(X × ∪j∈J ′Bj) = µ(∪j∈J ′Bj).

By the assumption that Gγ has more than one component, each of I ′ and J ′ correspond to
a proper subset of the sets of support components of ρ and µ respectively, and hence the
0 < ρ(∪i∈I′Ai) = µ(∪j∈J ′Bj) < 1.

[32, Theorem 3] also observes hypotheses on the cost c and the supports of the measures, which
are required for a uniqueness argument established using proof techniques of the classical result
Proposition 5.1. We do not improve their hypotheses on c, but we significantly improve upon
the hypothesis Supp ρ = cl(int(Supp ρ)) with int(Supp ρ)) connected.

5.2 Uniqueness

We begin by extending the classical result Proposition 5.1. We present everything in quadratic
cost. However, the proof below is very likely amenable to costs such that x 7→ c(x, y) is semi-
concave with semiconcativity modulus uniform over y, and probably also holds for c that is
everywhere differentiable in x, and uniformly Lipschitz in x locally in y (for each ball in Y, we
can choose a Lipschitz constant for x 7→ c(x, y) depending only on the ball). These generalisa-
tions were omitted for reasons of time and simplicity of exposition.

Definition 5.2. We say a set Ω is Lipschitz-path connected if for any x0, x1 ∈ Ω, there exists a
finite length curve ω : [0, 1] → Ω such that ω(0) = x0 and ω(1) = x1. Without loss of generality,
we take ω to be parametrised with constant speed, hence Lipschitz.

In particular, Lipschitz-path connected spaces include many lower-dimensional subspaces of Rd
which are not covered by the closure of the interior style assumption, which is inherently d-
dimensional. Measures supported on such sets need not have a density with respect to Lebesgue
measure on Rd. They could instead, for example, have densities with respect to some Hausdorff
measure Hk, concentrated on some submanifold of Rd.

Theorem 5.3. Let c(x, y) = ∥x− y∥2, let ρ and µ be probability measures on Rd. Assume that
Supp ρ is Lipschitz-path connected and Suppµ is bounded. Then optimisers of the dual problem
(1.2) are unique up to a constant.
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x0

x1

x0

x1

Figure 5.1: Two Lipschitz path-connected sets. Their interiors are not connected, so known
uniqueness results do not apply to measures with this support. Uniqueness with bounded target,
Theorem 5.3 applies to both domains, whilst for unbounded target, Theorem 5.9 only applies
to the left picture.

Proof. Let ϕ0, ϕ1 ∈ Cb(X ) be two optimal Brenier potentials for the transport between ρ and µ.
Take any x0, x1 ∈ Supp ρ, by assumption there exists a Lipschitz curve ω : [0, 1] → Supp ρ with
ω(0) = x0 and ω(1) = x1. We set

ϕ̃i : [0, 1] → R; ϕ̃i(t) := ϕi(ω(t)) for i = 0, 1.

Since Suppµ is bounded, each ϕi is Lipschitz and hence so is each ϕ̃i as a composition of Lipschitz
functions. By Rademacher’s theorem, both ϕ̃i and ω are differentiable t-a.e., so the intersection
of these points has full measure Lebesgue measure on [0, 1]. Let t be such a differentiability
point. Fix any optimal γ ∈ Γ(ρ, µ). Since Suppµ is bounded pX(Supp γ) = Supp ρ where pX
denotes projection onto the x coordinate, see Appendix, Lemma A.3. Hence for each t ∈ [0, 1],
there exists at least one y such that (ω(t), y) ∈ Supp γ. By the compatibility condition (1.7),
y ∈ ∂ϕi(ω(t)). Applying a subdifferential inequality at ω(t) for t ∈ (0, 1) gives

ϕ̃i(t+ h) ≥ ϕ̃i(t) + ⟨y|ω(t+ h)− ω(t)⟩.

Considering small h > 0 and h < 0, dividing by h and passing to the limit h → 0 which exists
by differentiability,

ϕ̃′i(t) = ⟨y|ω′(t)⟩.
The above shows that for a.e. t, the projection of ∂ϕ in the direction ω′(t) is unique, and
specified to be the same for any dual potential. It follows that

ϕ̃′1(t)− ϕ̃′0(t) = 0 for a.e. t ∈ [0, 1],

and consequently

ϕ0(x1)− ϕ0(x0) =

∫ 1

0
ϕ̃′0(t)dt =

∫ 1

0
ϕ̃′1(t)dt = ϕ1(x1)− ϕ1(x0)

so that ϕ1(x0)−ϕ0(x0) = ϕ1(x1)−ϕ0(x1) for all x0, x1 ∈ Supp ρ. In other words, ϕ0 and ϕ1 are
equal up to a constant.

Example 5.4. In general, the set of t ∈ [0, 1] along a given path for which there are multiple
y ∈ ∂ϕ(ω(t)) can have non-zero Lebesgue measure. The above proof establishes that the set of
possible projections of all such y in the direction ω′(t) is a.e. a singleton. Consider the example
given in [30, Section 1.4] and illustrated in Figure 5.2. On R2, let

ρ = H1|{0}×[0,1] and µ =
1

2
H1|{−1}×[0,1] +

1

2
H1|{1}×[0,1].

Here, Theorem 5.3 applies so we have uniqueness. Despite this, at every point in Supp ρ, any
optimal potential’s subgradient is multivalued; it must contain at least two points corresponding
to the horizontal splitting of the mass of the optimal plan. But the projection of these gradient
values vertically (directions which stay in Supp ρ) gives a single value.
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Figure 5.2: Transport between ρ = H1|{0}×[0,1] and µ = 1
2(H

1|{−1}×[0,1] +H1|{1}×[0,1]).

Example 5.5. There is no reason why we cannot have uniqueness of the dual problem when
the primal problem has non-uniqueness. On R2, let

ρ = H1|{0}×[−1,1] and µ = H1|[1,3]×{0}.

Here every transport plan γ ∈ Π(ρ, µ) is optimal, since ⟨x0 − x1|y⟩ = 0 for any x0, x1 ∈ Supp ρ
and y ∈ Suppµ, and so all plans have cyclical monotone support.

Figure 5.3: Transport between H1|{0}×[−1,1] and µ = H1|[1,3]×{0}.

Any plan is optimal, so the primal is non-unique while the dual is unique.

Remark 5.6. Assume we have two Lipschitz-path connected sets A0, A1 in Supp ρ, and consider
a “distance” between each defined by

d(A0, A1) = inf
x0∈A0
x1∈A1

∥x0 − x1∥.

(Of course, this is not a proper distance, as it satisfies neither positive definiteness nor the
triangle inequality.) If d(A0, A1) = 0, then (still assuming Suppµ is bounded so that ϕ is
Lipschitz) ϕ is unique up to a constant on A0 ∪ A1. To see this, let ϕ0 and ϕ1 be two optimal
potentials. Theorem 5.3 tells us that when restricted to each Ai, ϕ1 = ϕ0 + ai for some ai ∈ R.
Take {xni }∞k=1 ⊂ Ai points such that ∥xn0 − xn1∥ → 0 as n→ ∞. Then

|a0 − a1| = |ϕ1(xn0 )− ϕ0(x
n
0 )− (ϕ1(x

n
1 )− ϕ0(x

n
1 ))| ≤ 2L∥xn0 − xn1∥ → 0.

Where L is the Lipschitz constant of the ϕi (which can be taken to be RSuppµ, the radius of the
smallest ball containing Suppµ). Hence, a0 = a1 and potentials are specified up to a constant on
A0 ∪A1 as required. More generally, the above can easily be extended to ρ with support which
is connected and is the union of finitely many Lipschitz-path connected components. Here, one
can decompose ρ into its Lipschitz-path components, observe that the graph with vertices as
these components and an edge if and only if the two components are distance zero apart is
connected, then argue as above to deduce that the potential is unique up to a constant across
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the entire support. The limit of applicability for this argument seems to be to any Supp ρ such
that for any x0, x1 ∈ Supp ρ,

inf
ω:[0,1]→Supp ρ
ω(0)=x0 ω(1)=x1

{ ∞∑
k=1

∥ω(t+k )− ω(t−k )∥ : ω piecewise Lipschitz with jumps at t0, t1, ...

}
= 0.

However, this technique does not seem amenable to a more general connected Supp ρ, or even
just a path-connected Supp ρ (without the hypothesis that the path should be Lipschitz). In
particular, assume f : [0, 1] → [0, 1] is a sample path of a Brownian motion. Consider ρ =
(Id, f)#Leb|[0,1]. Then Supp ρ is path connected, but every path connecting two points is locally
of infinite length and nowhere differentiable, so the above argument cannot propagate uniqueness
along such a curve.

For c(x, y) = ∥x − y∥2, in certain cases, the above argument also allows the removal of the
assumption that Suppµ is bounded.

Definition 5.7. The relative interior of a set, denoted ri is the interior taken with respect to
the affine hull of the set rather than the full space. Here, the affine hull of X ⊂ Rd is defined as

aff(X ) :=

{
k∑
i=1

λixi|k > 0, xi ∈ X , λi ∈ R with

k∑
i=1

λi = 1

}
.

Theorem 5.8. [28, Theorem 10.4]. Let f be a proper convex function, then f is locally Lipschitz
on its restriction to ri(dom f).

Theorem 5.9. Let c(x, y) = ∥x− y∥2, let ρ and µ be probability measures on Rd. Assume that
Supp ρ is Lipschitz-path connected such that for any x0, x1 ∈ Supp ρ the path can be chosen with

ω(t) ∈ int(conv Supp ρ) for all t ∈ [0, 1]. (5.2)

Then optimisers of the dual problem (1.2) are unique up to a constant.

Proof. This follows almost directly from the proof of Theorem 5.3. Fix a t where (5.2) holds,
and take ε > 0 with Bε(ω(t)) ⊂ int conv(Supp ρ). By definition of the support ρ(Bε(ω(t))) > 0,
and so given some optimal plan γ ∈ Π(ρ, µ), we define

ρ̃ =
1

ρ(Bε(ω(t)))
ρ|Bε(ω(t))

and its image measure under γ denoted µ̃γ , defined by

µ̃γ(A) =
1

ρ(Bε(ω(t)))
γ(Bε(ω(t)))×A) for all measurable A ⊂ Rd.

By Theorem 5.8, any optimal potential ϕ is Lipschitz when restricted to Bε(ω(t)), and so it
follows that Supp µ̃γ is bounded. Consequently, we can apply Theorem 5.3 to the dual problem
between ρ̃ and µ̃γ , which gives that the restrictions of all potentials for the original problem are
unique up to a constant on Supp ρ ∩Bε(ω(t)). We conclude that potentials are unique globally
up to a constant on Supp ρ as required, by choosing overlapping neighbourhoods covering the
path ω.

Remark 5.10. One could attempt to extend the above to only requiring

ω(t) ∈ ri(conv Supp ρ) for all t ∈ [0, 1],
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following the same proof only instead using balls Bri
ε with respect to aff Supp ρ rather than all of

Rd. There are two places in the proof of Theorem 5.3 uses that Suppµ is bounded. Once is for
the potentials to be Lipschitz, this extends directly to a relative interior assumption by Theorem
5.8. The second is to apply Lemma A.3 and deduce Supp ρ ⊂ pX(Supp γ). This requires some
work, and one should prove that for an optimal quadratic cost γ

(ri conv Supp ρ) ∩ Supp ρ ⊂ pX(Supp γ).

This seems plausible but has not been established in time for submission of this report.

Theorem 5.11. Let ρ and µ be probability measures on Rd, let c(x, y) = ∥x − y∥2. Assume
that each support is a finite union of Lipschitz-path connected components (Ai)i∈I and (Bj)j∈J
respectively. Define the bipartite graph G = (V,E) with V = (Ai)i∈I ∪ (Bj)j∈J and

(Ai, Bj) ∈ E ⇐⇒ there exists an optimal γ ∈ Π(ρ, µ) with γ(Ai ×Bj) > 0.

If G is connected, then solutions to the dual problem (1.2) are unique up to a constant.

Proof. Let ϕ0, ϕ1 ∈ Cb(X ) be two Brenier potentials, let ψ0, ψ1 ∈ Cb(Y) be the corresponding
dual potentials. In general, if γ ∈ Π(ρ, µ) is optimal, then any γ̃ ≤ γ is also optimal for the c cost
transport between its marginals, see Appendix, Lemma A.4. Consequently, the compatibility
condition (1.7) implies that if ϕ ∈ L1(ρ) is optimal for the dual problem over Π(ρ, µ), then it is
optimal for the dual problem over Π(ρ̃, µ̃), since Supp γ̃ ⊂ Supp γ ⊂ ∂ϕ.

Thus by Theorem 5.3, there exist ai, bj ∈ R such that on each component Ai, ϕ0 = ϕ1 + ai and
on each component Bj , ψ0 = ψ1+ bj . We want to show that all ai are equal to some a ∈ R, and
consequently each bj = −a also.

Fix some i, i′, let x ∈ Ai and x
′ ∈ Ai′ . We will show that ai = ϕ0(x)−ϕ1(x) = ϕ0(x

′)−ϕ1(x′) =
ai′ . Let i = i1, j1, i2, j2, ..., jn−1, in = i′ be a path between Ai and Ai′ in G. Then there exist

x = x1, x̂1, y1, ŷ1, x2, x̂2, ..., yn−1, ŷn−1, xn, x̂n = x′

with xk, x̂k ∈ Aik and yk, ŷk ∈ Bik such that for each k = 1, ..., n − 1 there exists γ ∈ Π(ρ, µ)
optimal with (x̂k, yk) ∈ Supp γ∩(Aik×Bjk) and there exists γ ∈ Π(ρ, µ) optimal with (xk+1, ŷk) ∈
Supp γ ∩ (Aik+1

×Bjk). Consequently, (x̂k, yk), (xk+1, ŷk) ∈ ∂ϕi and so for l = 0, 1,

ϕl(x̂k) + ψl(yk) = ⟨x̂k|yk⟩ and ϕl(xk+1) + ψl(ŷk) = ⟨x̂k+1|yk⟩. (5.3)

It follows that

ai = ϕ0(x)− ϕ1(x) = ϕ0(x̂1)− ϕ1(x̂1) = ψ1(y1)− ψ0(y1)

= ψ1(ŷ1)− ψ0(ŷ1) = ϕ0(x2)− ϕ1(x2) = · · · = ϕ0(x̂n)− ϕ1(x̂n) = ai′ ,

and so ai = ai′ = −bj = −bj′ for all i, j ∈ I × J . In other words, the dual potentials are unique
up to a constant as required.

It appears possible the result could be extended to the multi-marginal transport problem, con-
sidering the connectivity of an n-partite hypergraph.

As soon as there are an infinite number of components, the above graph can be unconnected
whilst preserving uniqueness, as the following example demonstrates.
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Example 5.12 (Uniqueness of potentials despite disconnected graph). In R2, set ρ = 1
2H

1
{−1}×[0,1]+

1
2H

1
{1}×[0,1]. Define the sequence of points {xn}n∈N ⊂ R2 by

x2n−1 :=

(
− 1

2n
,
1

n

)
; x2n :=

(
1

2n
,
1

n

)
,

then set

µ =

∞∑
n=1

2−n(δx2n−1 + δx2n),

see Figure 5.4. The connected components of Supp ρ are A1 = {−1}×[0, 1] and A2 = {1}×[0, 1].

B1

B3

B5

B7

...

B2

B4

B6

B8

...

A1 A2

B0

Figure 5.4: Transport between ρ and µ (Left), and the Bipartite support graph (Right). The
graph is disconnected, but the uniqueness of potentials holds as the components are “asymptot-
ically connected” via the point (0, 0).

The connected components of Suppµ are B0 = {(0, 0)} and Bn = {xn} for n ∈ N. Here, the
component B0 receives no mass from µ, but belongs to the support nonetheless as a limit point
of points from the other components. The graph for the transport has three disjoint components,
one from the left pairings of points and one from the right. Theorem 5.11 gives that the potentials
are defined up to a constant on each component of the graph. Then continuity of any Brenier
potential at (0, 0) forces uniqueness up to a constant globally, as a consequence of the arguments
presented in Remark 5.6.

One can also use calculations similar to those in the proof of Lemma 3.2 to ascertain quantitative
uniqueness results, i.e. bounds on the diameter of the optimal set. In particular, we have the
following

Proposition 5.13. Let ρ and µ be probability measures on Rd, let c(x, y) = ∥x− y∥2. Assume
that each support is a finite union of Lipschitz-path connected components (Ai)i∈I and (Bj)j∈J
respectively. Assume that the graph G defined in Theorem 5.11 consists of two connected com-
ponents G = G0 ⊔G1. Then for any two Brenier potentials ϕ0, ϕ1, we have

inf
λ∈R

∥ϕ0 − ϕ1 − λ∥∞ ≤ 1

2
inf

(x0,y0)∈SuppΓ∩G0

(x1,y1)∈SuppΓ∩G1

⟨x1 − x0|y1 − y0⟩. (5.4)

Proof. Assume we know the values of a Brenier potential ϕ on the G0 component of G. For any
(x0, y0) ∈ SuppΓ ∩ G0 and (x1, y1) ∈ SuppΓ ∩ G1, we have y0 ∈ ∂ϕ(x0) and y1 ∈ ∂ϕ(x1). By
the subdifferential inequality applied at each (xi, yi), the smallest and largest ϕ could be at x1,
in terms of ϕ(x0), is

ϕ(x1) ∈
[
ϕ(x0) + ⟨y0|x1 − x0⟩, ϕ(x0) + ⟨y1|x1 − x0⟩

]
. (5.5)

Hence for two potentials ϕ0, ϕ1 with ϕ0(x0) = ϕ1(x0), rearranging the above gives

|ϕ0(x1)− ϕ1(x1)| ≤ ⟨x1 − x0|y1 − y0⟩.
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Since on each component of G the potentials are unique up to a constant,

|ϕ0(x1)− ϕ1(x1)| = |ϕ0(x′1)− ϕ1(x
′
1)|

for all x1, x
′
1 ∈ G1, and so if the difference between two potentials is bounded at one place in

G1, the same bound holds everywhere. (Note here by x ∈ G1 we mean x belongs to the union
of the Ai vertices in the component G1.) Thus, all differences globally on G1 are bounded by
the tightest possible bound at any one point in the component, so we can pass to the infimum.
Hence (5.4) follows after dividing by 2 since we can optimise λ so the displacement is centred,
rather than ϕ0 = ϕ1 on G0.

Remark 5.14. The right-hand side of (5.4) can be bounded using Cauchy-Schwarz to give

inf
λ∈R

∥ϕ0 − ϕ1 − λ∥∞ ≤ 1

2
min(εXRY , εYRX ),

where RX and RY are the smallest radii of balls centred at the origin containing Supp ρ and
Suppµ respectively, and εX is the largest pairwise distance attainable by partitioning (Ai) into
two components,

εX = inf
ℵ1⊔ℵ2={Ai}i∈I

d
( ⋃
A∈ℵ1

A,
⋃
A∈ℵ2

A
)

with d denoting the closest distance between sets defined in Remark 5.6, and εY is defined
symmetrically.

For example, suppose Supp ρ has two Lipschitz-path connected components A0 and A1, then we
have the following bound on the uniform norm diameter of the optimal set

sup
ϕ0,ϕ1
optimal

inf
λ∈R

∥ϕ0 − ϕ1 − λ∥∞ ≤ 1

2
d(A0, A1)Diam(Suppµ).

Where here we replaced RY with DiamY due to the translation invariance of quadratic optimal
transport, as in Chapter 2.

When there are more than two connected components of G, one should instead consider the
graph of connected components of G given the above distance quantity, and the diameter of
the optimal set becomes less clear. One can see parallels between this calculation and those of
Proposition 3.7. A better understanding of this type of graph structure is the subject of ongoing
work.
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6 Conclusions

The original contributions of this work are:

Chapter 1: The observations and preliminary results on the stability of optimal transport
plans.

Chapter 2: The extension of the strong convexity inequality to a larger class of measures using
glueing, which implies stability of Wasserstein barycentres for a large class of measures.

Chapter 3: Unifying known literature on the discrete primal and dual problems. Explicit
characterisation of the set of dual optimisers for the discrete transport problem. (Some unfin-
ished calculations have been omitted here, which seem to suggest this formulation could be very
helpful for studying the quantitative stability of Φ and Ψ.)

Chapter 4: A qualitative understanding of how fully discrete transport plans behave under
perturbation of source support points - quantitatively stable as long as uniqueness is preserved,
at which case the optimal plans may have jump discontinuities corresponding to changing vertex
on the polyhedron Π(α, β). This is the first step towards a resolution of Problem 1 under the
discrete hypothesis on ρ.

Chapter 5: Significant weakening of source hypotheses needed for uniqueness of optimisers for
the dual problem. Lipschitz-path connected spaces are a huge class of spaces, including any
connected differentiable submanifold of Rd. Formalised graph-based uniqueness criteria in the
continuous setting. First calculations in the direction of Quantitative uniqueness results (bounds
on the diameter of the optimal set).

The main takeaway of this report is that the connections between linear programming and
optimal transport should not be overlooked. After a period of intense interaction in the 20th
century, modern optimal transport has, in recent decades, moved closer to analysis and PDEs.
As shown in Chapter 3, the combinatorial characterisations of extreme points provide valuable
intuition for the discrete transport problem, motivating the novel results of Chapters 4 and 5.
This demonstrates that linear programming and combinatorial perspectives remain relevant for
advancing our theoretical understanding of optimal transport. Problems 1, 2, and 3 remain wide
open, and I look forward to tackling them during the course of my PhD...
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A Appendix

Lemma A.1. Let F : [0, 1] → R

F(t) =
n∑
k=1

∥ak − tbk∥p

with ak, bk ∈ Rd and p > 0. Then F is analytic except at finitely many points. Hence for two
such functions F0, F1, the zero set of (F0−F1)(t) on [0, 1] is a (possibly empty) union of a finite
number of isolated points and a finite number of intervals.

Proof. Consider such a function F . For each k, the mapping

t 7→ ∥ak − tbk∥2

is real analytic, and has at most one tk at which it vanishes (if ak and bk are collinear and
ak = tbk for some t ∈ [0, 1]). Thus composing with x 7→ xp/2 (which is real analytic either side
of x ̸= 0), we deduce that

t 7→ ∥ak − tbk∥p

is real analytic on R \ {tk}, we see that ∥ak − tbk∥p is real analytic on all R except at most one
point. Hence F is real analytic except at most a finite number of points t0, t1, ..., tn.

Consequently, taking two different F0, F1 defined by two different σ from (4.5), F0 − F1 is real
analytic except at most a finite number of points t0, ..., t2n. Hence on the interior of each of
these intervals, F0 − F1 is either constantly zero or has finitely many zeros. Hence the total set
of zeros on [0, 1] is as described.

Remark A.2. Probably this can be tightened to be zero on all [0, 1] or finitely many zeros by
using the permutational structure of the F0 and F1 specific to our problem, but that did not
seem important to pursue here.

Lemma A.3. Let ρ and µ be probabilities on Rd, and let γ ∈ Π(ρ, µ) with Suppµ bounded.
Then pX(Supp γ) = Supp ρ, so that for each x ∈ Supp ρ there exists y with (x, y) ∈ Supp γ.

Proof. One inclusion always holds without any hypotheses: Since Supp ρ × Rd is a closed set
of full measure, Supp γ ⊂ Supp ρ × Rd, and hence pX(Supp γ) ⊂ Supp ρ. The inverse inclusion
does not always hold in general, as it could be that pX(Supp γ) is not closed. For example,
X = Y = R and γ supported on the graph of {(x, 1/x) : x > 0}, then pX(Supp γ) = (0,∞),
whereas the support of the X marginal is [0,∞).

Assume Suppµ is bounded. Necessarily pX(Supp γ) has full ρ mass, and so it holds that

Supp ρ ⊂ pX(Supp γ).

Thus, it suffices to show that pX(Supp γ) is closed. Take xn ∈ pX(Supp γ), with xn → x then
there exist yn with (xn, yn) ∈ Supp γ, by compactness of Suppµ we can assume that yn converges
to some y, and hence (x, y) ∈ Supp γ by closedness of Supp γ. In other words, x ∈ pX(Supp γ),
establishing the result.
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Lemma A.4. If γ ∈ Π(ρ, µ) is an optimal transport plan for cost c (no real hypotheses needed
on c) and π ≤ γ, then

π̂ :=
π

π(Rd × Rd)
is an optimal transport plan between its marginals ρ̂ = pX#π̂ and µ̂ = pY#π̂.

Proof. Assume π̂ is not optimal, then there exists a transport plan w with marginals ρ̂, µ̂ such
that ∫

c(x, y)dw <

∫
(c(x, y)dπ̂.

Thus the transport plan between marginals ρ and µ defined by

γ̂ = π̂(Rd × Rd)w + (γ − π)

has cost ∫
c(x, y)dγ̂ =π̂(Rd × Rd)

∫
c(x, y)dw +

∫
c(x, y)d(γ − π)

<π̂(Rd × Rd)
∫
c(x, y)dπ̂ +

∫
c(x, y)d(γ − π)

=

∫
c(x, y)dγ,

contradicting the optimality of γ. Note that for the well definition of γ̂ as a transport plan it
was crucial π ≤ γ.
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