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Introduction

History of optimal transportation theory

The story of optimal transport begins in France with mathematician Gaspard Monge, a
few years before the revolution of 1789. Monge was a prominent figure in French society:
He served on the committee involved in establishing the metric system, was involved in
the founding of the École Polytechnique, and was a friend and aide of Napoleon[8]. Our
interest with Monge, however, lies in his 1781 paper [21] submitted to the Académie
des sciences, titled “Mémoire sur la théorie des déblais et des remblais”. The paper
discusses the problem of moving piles of earth to another location/arrangement in the
most economical way.

Specifically, the Monge problem (in its modern form in the language of measure theory,
which was yet to be developed) is as follows. Given two probability measures µ, ν ∈
P(Rd), representing a distribution of mass, one considers maps T : Rd → Rd that
“push” the mass distribution of µ onto that of ν meaning

µ(T−1A) = ν(A) for each measurable A ⊂ Rd,

written T#µ = ν. This is saying that the mass arriving at each A is precisely the amount
that was sent there under T . We wish to choose such a T minimising the transport cost∫

Rd

|T (x)− x|dµ(x),

which represents an average of the Euclidean distances particles have moved. In the case
that µ and ν are absolutely continuous, one can imagine these mass distributions as piles
of sand given by the graphs of the densities, and we wish to move one pile to the other
in the most cost-efficient way. If µ and ν have densities f and g and T is differentiable,
then this condition is equivalent to the Jacobian equation

g(T (x)) detDT (x) = f(x). (1)

This problem has some clear generalisations - we need not be in a Euclidean space,
and we might also hope to understand a more general cost function. For spaces X
and Y between which we are transporting µ ∈ P(X), ν ∈ P(Y ), and a cost density
c(x, y) : X × Y → R, Monge’s problem generalises to

(MP) min

{∫
X
c(x, T (x))dµ(x) : T#µ = ν

}
.
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In general, this problem can be ill-posed in multiple ways: uniqueness can fail, sometimes
a minimiser does not exist, and sometimes there is no transport map at all, as we
demonstrate in the following canonical example.

Example 0.1 (No transport exists). Let µ = δ0 ∈ P(R) be a Dirac mass, and consider
the target measure ν = 1

2δ−1 + 1
2δ1; two Dirac masses. Then no transport map can

exist as the image measure T#µ under any map T will be a single Dirac δT (0). The
philosophical limitation here is that the Monge problem does not allow “splitting” of
mass - we cannot break up the Dirac and send half of the mass to each of the atoms of
ν.

Fast forward to 1942 in the Soviet Union. Mathematician and economist Leonid Kan-
torovich proposes a similar problem in [18], discussing applications “location of consump-
tion stations with respect to production station” for the optimal planning of railways,
and “levelling a land area” in which Kantorovich states a similar motivation to that of
Monge.

Kantorovich’s idea is that instead of maps, one considers “transport plans” represented
by measures γ ∈ P(X × Y ). Here γ(A×B) represents the amount of mass transported
from the set A ⊆ X to B ⊆ Y . One views B 7→ γ({x} × B) as describing the image
distribution of the mass starting at x (the crucial point being that this disintegration
measure need not be a Dirac mass, so we can “split” the mass at x across the posterior
space). Then the restrictions on the prior and posterior mass distributions become
conditions on the marginals of γ: we want that for each measurable A ⊆ X and B ⊆ Y

µ(A) = γ(A× Y ) and ν(B) = γ(X ×B);

so that the total mass leaving X is distributed according to µ and the total mass which
arrives in Y is distributed according to ν. Simple calculations show this is equivalent1

to asking πx#γ = µ andπy#γ = ν. We write Π(µ, ν) for all such measures. We observe
that this is never empty, as one has at least the product measure µ × ν; so unlike in
Example 0.1, there is always a transport plan (in this case the product measure is the
only transport plan, and crucially this splits the mass at 0 in µ, which (MP) does not
allow). This leads to Kantorovich’s problem

(KP) min

{∫
X×Y

c(x, y)dγ(x, y) : γ ∈ Π(µ, ν)

}
.

There are multiple reasons why (KP) is more tractable - first the linearity of the problem,
and second that the constraint is closed under weak convergence. We will explore these
in detail in Chapter 1.

1Here, πx, πy are the projections from X × Y onto the respective coordinates.
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Structure of the report

• In Chapter 1, we discuss the core theory regarding the Monge and Kantorovich
problems. Focusing on the more tractable (KP) first, we prove a general existence
result, characterise optimal plans for an arbitrary continuous cost function, and
formulate and prove the equivalence of a dual problem. We then consider (MP)
and its relations to (KP), proving a general equivalence between the minimisation
costs for suitably regular source measure µ, existence and uniqueness of an optimal
map for the case c(x, y) = h(y−x) for h strictly convex, and discuss the quadratic
case h(z) = |z|2 and some of its niceties. Finally we look at the Benamou-Brenier
formulation of optimal transport, which recasts the problem in the language of
continuum mechanics.

• In Chapter 2, we consider some function spaces due to S. Campanato and C.
Morrey, which we show, for certain parameters, are isomorphic to Hölder spaces.
Campanato spaces consist of functions that can locally be approximated by degree
k polynomials suitably strongly in Lq norm at each point. We show that for
certain parameters this guarantees k derivatives, with the kth order ones Hölder
continuous. These results will aid us in establishing regularity for optimal transport
maps and elliptic PDE in the following chapters.

• In Chapter 3, we step away from optimal transport to discuss the regularity of weak
solutions to a certain class of linear elliptic PDE. We discuss when solutions lie
in both Sobolev and Hölder spaces, depending on the coefficients of the equation.
The former is established using a difference quotient which we uniformly bound
in Lq norm, from which functional analysis tools give a convergent subsequence
whose limit we show is a weak derivative. The Hölder regularity is established
obliquely, showing that the solutions lie in Campanato and Morrey spaces.

• In Chapter 4, we present the recent work of Goldman and Otto [16, 15], a partial
regularity C1,α result for optimal transport maps between uniform measures. This
is established using the Benamou-Brenier formulation to construct a harmonic
function who’s gradient approximates the transport displacement of the optimal
map T in the Lagrangian setting. We then prove a so called “epsilon regularity”
result which allows us to iterate approximating T better with harmonic gradients.
This is sufficiently fast that the first order Taylor series of the harmonic gradient is
a sufficient competitor to show the map lies in a certain Campanato space, which
gives the Hölder regularity.
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1 Lagrangian and Eulerian formulations
of optimal transport

This chapter covers the core results regarding the Monge and Kantorovich problems in-
troduced in the introduction, as well as considering a third framework from the Eulerian
viewpoint due to Benamou and Brenier.

1.1 The Kantorovich problem

1.1.1 Existence

We begin by stating a general existence theorem for (KP) defined in the introduction,
following the references [25, Ch. 1] and [2, Ch. 1]. We start by stating explicitly what
we mean by weak convergence.

Definition 1.1. We say a sequence µn ∈ P(X) converges narrowly to µ if µn ⇀ µ
weakly in duality with Cb(X), so that

∫
X ϕdµn →

∫
X ϕdµ for all ϕ ∈ Cb(X). Narrow

convergence is, in general, non-metrisable, but it is a relatively powerful notion: if µn ⇀
µ then µn(A) → µ(A) for any Borel set A ⊂ X.

To show the existence of a minimiser we use the Prokhorov theorem which gives the
equivalence of tight and compact sets of measures w.r.t the narrow topology (see ap-
pendix Theorem B.2). Once we have the compactness, the proof follows by standard
variational arguments.

Theorem 1.2. Let X and Y be Polish spaces, with µ ∈ P(X) and ν ∈ P(Y ) and
c : X × Y → R be l.s.c. and bounded from below. Then (KP) admits a solution.

Proof. [Step 1: Π(µ, ν) is compact w.r.t the narrow topology .]

We first show Π(µ, ν) is tight. Fix ε > 0 and note that since singletons are compact and
hence tight, the converse of Prokhorov gives the existence of KX ⋐ X and KY ⋐ Y with
µ(X \KX) < ε/2 and ν(Y \KY ) < ε/2. Then for any γ ∈ Π(µ, ν) we have

γ((X×Y )\(KX×KY )) ≤ γ((X\KX)×Y )+γ(X×(Y \KY )) = µ(X\KX)+ν(Y \KY ) < ε.

Thus we have that Π(µ, ν) is tight with KX ×KY compact sufficing for the ε challenge.
Prokhorov then gives relative compactness. For the full compactness, consider consider
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a convergent sequence γn ∈ Π(µ, ν) with γn ⇀ γ. Then taking ϕ ∈ Cb(X × Y ) as
ϕ = χA×Y for any measurable A gives

µ(A) =

∫
X×Y

χA×Y dγn →
∫
X×Y

χA×Y dγ = πx#γ(A),

and since the LHS is constant γ has X marginal µ, and a symmetrical argument works
on Y so that γ ∈ Π(µ, ν) and Π(µ, ν) is narrowly compact.

[Step 2: K(γ) =
∫
cdγ is lower semi-continuous w.r.t the narrow topology.]

Take γn ⇀ γ, then as c is l.s.c. and bounded below, there exists a sequence of continuous
functions ck monotone increasing from below to c1. By definition of narrow convergence∫
ckdγn →

∫
ckdγ for each k, so that

lim inf
n

∫
c(x, y)dγn ≥ lim inf

n

∫
ck(x, y)dγn =

∫
ck(x, y)dγ,

by monotonicity. Then monotone convergence in k gives the result.

[Step 3: A minimiser for (KP) exists.] This follows from standard arguments from
the calculus of variations. Take a minimising sequence, pass to a subsequence by the
compactness of Π(µ, ν), then the limit measure is a minimiser by lower semi-continuity.

1.1.2 Characterisation of optimal plans for a continuous cost

In this section, we seek to understand (KP) in the case of continuous cost, mostly
following references [2, 25].

Definition 1.3. For a function φ : X → R ∪ {±∞}, we define the c-transform of φ by

φc : Y → R φc(y) = inf
x∈X

c(x, y)− φ(x).

and similarly the c-transform of a function ψ : Y → R ∪ {±∞} by

ψc : X → R ψc(x) = inf
y∈Y

c(x, y)− ψ(y).

We say a function is c-concave if it is the c or c transform of some function.

Definition 1.4. For a c-concave function φ : X → R ∪ {−∞}, we define the c-
superdifferential of φ by pairs x, y satisfying.

∂cφ := {(x, y) ∈ X × Y : φ(x) + φc(y) = c(x, y)}
1For f : X → R l.s.c. one can take fk(x) = infy f(y) + kd(x, y).
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Remark 1.5. We define c-concavity in terms of an inf, and this means one can easily
verify that for any c-concave function, φcc = φ. For the case c(x, y) = −⟨x, y⟩, the c-
transform becomes the (negated) Legendre transform for concave functions. We usually
define concave functions by some interpolation inequality rather than as an inf of affine
functions, so establishing that the double Legendre transform of any concave function
returns to itself is not so trivial.

Definition 1.6. For a cost c : X × Y → R, a set Γ ⊂ X × Y is said to be c-cyclically
monotone (c-CM) if for any collection of points (x1, y1), . . . (xn, yn) ⊂ Γ, and any per-
mutation σ : {1, . . . , n} → {1, . . . , n}, we have

n∑
i=1

c(xi, yi) ≤
n∑
i=1

c(xi, yσ(i)).

By relabeling points, one can replace the need for σ(i) with simply i+ 1 ∈ Z/n.

As in [2]; consider µ =
∑ 1

nδxi and ν =
∑ 1

nδyi as unweighted sums of Dirac masses in a
Euclidean space, with the same number of atoms in each. It is clear that having c-CM
support is a necessary and sufficient condition for an optimal plan; this simply says that
there is no way we can swap where mass is sent to reduce the overall cost.

If the cost is continuous, this can be seen to also be necessary for general non-atomic
measures, despite the above only being a condition on countable collections of points.
Any neighbourhood of any point in the support of some plan γ has some mass transported
through it, and by continuity, if Spt γ was not c-CM we would find some regions of
positive mass on which for some permutation, the sum of costs was strictly larger.
We could then construct a competitor with lower transport cost by permuting where
these regions of mass are sent. We formalise this in the below theorems as found in
[2, 25], showing that this criterion completely characterises optimisers of (KP) when c
is continuous.

Theorem 1.7. Let γ ∈ Π(µ, ν) be optimal for (KP) with cost c be continuous. Then
Spt γ is c-cyclically monotone.

Proof. Assume γ has support not c-cyclically monotone, call this Γ := Spt γ. Then there
exist pairs of points (x1, y1), . . . (xn, yn) ⊂ Γ such that

n∑
i=1

c(xi, yi+1) <

n∑
i=1

c(xi, yi).

By continuity, we can find neighbourhoods xi ∈ Ui, yi ∈ Vi such that

n∑
i=1

c(ui, vi+1)−
n∑
i=1

c(ui, vi) < 0 for all ui, vi ∈ Ui, Vi.
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We now modify γ to create a new plan γ̃ = γ+m with lower transport cost. To maintain
γ̃ ∈ Π(µ, ν), we require that m is a signed measure with zero X and Y marginals and
γ ≥ m− so that γ̃ is a positive measure. Since xi, yi ∈ Γ we have γ(Ui × Vi) > 0 for
each i, so that we can define the measures γi =

1
γ(Ui×Vi)γ|Ui×Vi , with marginals µi and

νi. Then for each i, we can build a measure γ̃i ∈ Π(µi, νi+1), and define m by

m =
mini γ(Ui × Vi)

n

k∑
i=1

(γ̃i − γi).

Then γ̃ = γ + m is admissible and has a lower transport cost than γ, so γ is not
optimal.

The following is another characterisation of optimal plans, found in [2, 25].

Theorem 1.8. Suppose that c is continuous, bounded below, assume there exists f ∈
L1(µ) and g ∈ L1(ν) such that

c(x, y) ≤ f(x) + g(y). (1.1)

Suppose that Γ ⊂ X × Y is a c-cyclically monotone set, then there exists a c-concave
function φ : X → R∪ {−∞} (which is not constantly −∞) such that max(φ, 0) ∈ L1(µ)
and Γ ⊂ ∂cφ.

Proof. Omitted. The details can be found in the above references.

1.1.3 The dual formulation

Since (KP) is a linear minimisation with linear constraints, it admits a natural dual
problem, given by maximising some functional with linear constraints. We give two
proofs: the first is more derivative à la [25], using Theorem B.3 for an infinite-dimensional
inf-sup exchange. The idea is to turn the constraint on the marginals into a sup, then
attempt to justify exchanging inf and sup due to convexity and concavity in the different
variables (here it is just linearity). The second instead uses the cyclical-monotonicity as
in [2].

Theorem 1.9 (Duality). Let c : X × Y → R be continuous and bounded below, and
satisfying (1.1). Consider the problems

(KP) min

{∫
X×Y

c(x, y)dγ : γ ∈ Π(µ, ν)

}
and

(DP) sup
φ,ψ

{∫
X
φdµ+

∫
Y
ψdν : φ(x) + ψ(y) ≤ c(x, y)

}
, (1.2)

where the sup is over φ ∈ L1(µ) and ψ ∈ L1(ν). We have sup (DP) = min (KP), and
the maximum of (DP) is attained.
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Proof using saddle point theory. With this in mind relaxing to allow any γ ∈ P(X×Y ),
the constraint can be expressed as

sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dγ =

{
0 γ ∈ Π(µ, ν)

+∞ if not,

where here we sup over φ ∈ L1(µ) and ψ ∈ L1(ν). By adding the constraint to (KP),
the problem becomes

inf
γ
sup
φ,ψ

∫
X×Y

cdγ +

∫
X
φdµ+

∫
Y
ψdν −

∫
X×Y

(φ(x) + ψ(y))dγ.

Since the expression is linear in all of γ, φ, ψ, we want to interchange inf and sup, and we
justify this by Theorem B.3, as taking φ,ψ ≡ 0, we know Π(µ, ν) is narrowly compact
and values of the transport cost are bounded over this set by (1.1). Thus the problem
becomes

sup
φ,ψ

∫
X
φdµ+

∫
Y
ψdν − inf

γ

∫
X×Y

c(x, y)− φ(x) + ψ(y)dγ.

Here the inner inf has value 0 if φ(x)+ψ(y) ≤ c(x, y) and −∞ otherwise, as we inf over
all positive measures. Thus we can write this inf instead as a constraint, giving the dual
formulation

(DP) sup
φ,ψ

{∫
X
φdµ+

∫
Y
ψdν : φ(x) + ψ(y) ≤ c(x, y)

}
.

Now as in [2] we show duality another way, also establishing that the sup is a max.

Proof using c-cyclical monotonicity. For sup(DP)≤ inf(KP), take any admissible φ,ψ, γ.
We have ∫

X
φdµ+

∫
Y
ψdν =

∫
X×Y

φ+ ψdγ ≤
∫
X×Y

cdγ.

Passing a sup and inf on either side gives the required inequality.

For sup(DP) ≥ inf(KP), take an optimal γ, then by Theorem 1.8, we have a pair of
potentials with max(φ, 0) ∈ L1(µ) and max(φc, 0) ∈ L1(ν) for which Spt γ lies in the
c-supergradient. Thus∫

X×Y
cdγ =

∫
X×Y

φ+ φcdγ =

∫
φdµ+ φcdγ,

so that φ ∈ L1(µ) and φc ∈ L1(ν) and the duality is proven.

Remark 1.10. Solutions to the dual problem are referred to as Kantorovich potentials.
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1.2 The Monge problem

We now turn towards the historical predecessor, Monge’s formulation. Some natural
questions which we will answer are:

• What is the relation between transport maps and transport plans?

• Are the values of the minimisation problems the same?

• When does an optimal map exist? When is it unique?

1.2.1 Equivalence of the minimisation cost for µ atomless

We first want to understand the relationship to (KP). Let T : X → Y be a transport
map between µ and ν. Then we can define a measure γT ∈ P(X × Y ) by

γT := (Id×T )#µ.

It is easily verified that for any A ⊂ X and B ⊂ Y

γT (A× Y ) = µ(A); γT (X ×B) = ν(B)

so that γT ∈ Π(µ, ν). We also note that Spt γ ⊆ {(x, T (x)) : x ∈ X}. Turning to the
respective costs of (MP) and (KP) we have∫

X×Y
c(x, y)dγT =

∫
X×Y

c(x, T (x))dγT =

∫
X
c(x, T (x))dµ,

where we first used the support concentration to replace y with T (x), and then that the
integrand only depended on x to replace the integration with the X marginal. Thus the
transport costs are the same, so we see that this plan encapsulates the behaviour of map
T .

An immediate corollary of this is also that min(KP) ≤ inf (MP), as the plan-induced
maps are a subset of Π(µ, ν).

Proposition 1.11. Let µ, ν ∈ P(Rd) and assume that µ is atomless. Then there exists
at least one transport map T#µ = ν.

Proof. Omitted, a simple construction can be found as Lemma 1.28/Corollary 1.29 in
[25].

Our example from the introduction demonstrated that in some cases, no optimal maps
exist. One might ask that if at least one map exists, can we find a minimiser? The
answer, in general, is no. However, we do have a strong result on the approximation of
plans by maps, as found in [25, Thrm. 1.32]. We first need the following lemma.
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Lemma 1.12. Let X be a compact metric space and ρ ∈ P(X). Let En = {Ei,n}i∈In be
a sequence of finite partitions of X with the diameter of the largest element

|En| := max
i

Diam(Ei,n) → 0 as n→ ∞.

Let ρn ∈ P(X) be such that they give the same mass to each element of each partition
En, that is, for each n and i, ρn(Ei,n) = ρ(Ei,n). Then ρn ⇀ ρ narrowly.

Proof. We set mi,n := ρn(Ei,n) = ρ(Ei,n). For any ϕ ∈ C(X) we have∣∣∣∣∣
∫
X
ϕdρn −

∫
X
ϕdρ

∣∣∣∣∣ ≤ ∑
i∈In

∣∣∣∣∣
∫
Ei,n

ϕdρn −
∫
Ei,n

ϕdρ

∣∣∣∣∣
≤
∑
i∈In

ω(Diam(Ei,n))mi,n ≤ |En| → 0,

where ω is the modulus of continuity of ϕ. The control on the 2rd line is simply that
the quantity above could be largest when ρ and ρn both assign all their mass on Ei,n to
points whose values are as far apart as the modulus of continuity allows.

Theorem 1.13. Let Ω ⊂ Rd be compact and µ, ν ∈ P(Ω) with µ atomless. The set of
map-induced plans γT is dense in Π(µ, ν) w.r.t the narrow topology.

Proof. Take an arbitrary γ ∈ Π(µ, ν), we will construct a sequence of maps Tn for which
γTn ⇀ γ.

Fix n, we partition Ω into a finite number of sets Ki,n of a diameter smaller than
1
2n , for example suitably small cubes. We set Ei,j,n := Ki,n × Kj,n, which form a
partition of Ω × Ω, with max diameter less than 1

n . On account of Lemma 1.12, we
must construct a transport map Tn for which γTn gives the same mass to each Ei,j,n.
We set Coli,n := Ki,n ×Ω and let γi,n be the restriction of γ to this, this is the measure
which describes where the mass starting in Ki,n ends up in Ω. We denote the marginals
of this measure as µi,n and νi,n, and by Proposition 1.11, define Ti,n as a transport map
between these marginals. Now each µi,n are concentrated on different sets of a partition,
they each describe where a certain part of the original mass goes. Thus

∑
i µi,n = µ and∑

i νi,n = ν, and we can define a map Tn =
∑

i Ti,n which transports µ to ν.

By construction, γTn gives the same mass as γ to each Ei,j,n, so γTn ⇀ γ by Lemma
1.12.

Corollary 1.13.1. For µ atomless and c continuous, inf (MP) = min (KP).

1.2.2 Existence of optimal maps for strictly convex cost

The results in the previous section do not tell us when there exists an optimiser to (MP),
or equivalently when the optimal plan of (KP) is induced by a map. In this section, we
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answer this question in the case X = Y = Ω ⊂ Rd for Ω compact, and cost function
c(x, y) = h(x − y) with h strictly convex, as found in [25, 2, Sect. 1.3]. We first need
the following, motivated by [27].

Proposition 1.14. For c(x, y) = h(x − y) with h strictly convex, c-concave functions
are locally Lipschitz and hence differentiable a.e.

Proof. We sketch the main ideas, details are found in [27, Lem. 2]. Since convex
functions on Rd are locally Lipschitz, then on a compact domain they are Lipschitz.
In light of [25, Box.1.8] the c-transform of a function inherits the modulus of continuity
of the cost, so any c-concave functions are Lipschitz. The differentiability follows from
Rademacher’s Theorem.

The following is presented as in [25, Thrm. 1.17].

Theorem 1.15. Let µ, ν ∈ P(Ω) for some compact Ω ⊂ Rd, with µ absolutely continuous
and µ(∂Ω) = 0. Let c(x, y) = h(x−y) for h strictly convex, bounded below and satisfying
(1.1). Then the optimal plan for (KP) is unique and induced by a map, and taking a
Kantorovich potential φ, we have an explicit form for the map

T (x) = x− (∇h)−1(∇φ(x)).

Proof. We prove this using duality. Let γ be an optimal plan for (KP), we aim to show
that for γ-a.e x0, y0 ∈ Spt γ, x0 uniquely specifies y0 so that we can define a map µ-a.e.
By Theorem 1.8, there exist Kantorovich potentials φ,φc such that

φ(x) + φc(y) ≤ h(x− y) on Ω× Ω and φ(x) + φc(y) = h(x− y) on Spt γ.

Since µ is absolutely continuous, then φ is differentiable µ-a.e. and consequently for
γ-a.e. x0, y0 ∈ Spt γ we have by first-order optimisation of the c-transform inf that

x 7→ h(x− y0)− φ(x) is minimised at x = x0,

so by differentiability given by the previous proposition, for γ-a.e x0, y0

∇xh(x0 − y0) = ∇φ(x0). (1.3)

Our assumption of strict convexity on h means that ∇h is strictly monotone in each
coordinate and hence invertible2, so that (noting also that the boundary points are
negligible by assumption)

y0 = x0 − (∇h)−1(∇φ(x0)) for γ-a.e. x0, y0 ∈ X × Y.

2Potentially with the need to view it as a multi-valued subgradient if h is not C1, but in any case
this multi-valued map is still invertible.
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Since the boundary and non-differentiability points are µ negligible, we can define µ-a.e.
a map T : X → Y by

T (x) = x− (∇h)−1(∇φ(x)).

Observe that (1.3) uniquely specifies the gradient of any Kantorovich potential, and
hence the map T is uniquely specified up to negligible sets. Consequently, we also have
uniqueness of the optimal γ.

Remark 1.16. We need the strict convexity here, as [25, Ex. 2.16] demonstrates. For
example with the classic Monge cost c(x, y) = |x − y|, considering one dimensional
transport on R between uniform densities µ = χ[0,2] and ν = χ[1,3], both the maps

T (x) = x+ 1; S(x) =

{
x+ 2 x ∈ [0, 1]

x x ∈ (1, 2].

are optimal as they have the same transport cost and T is the monotone map which is
always optimal in 1D for convex (not needing strictly) costs, see [25, Thrm. 2.9].

Remark 1.17. We note that if both µ and ν possess the regularity stated in the theorem
then there exists a unique map optimising the transport from ν to µ also, and this must
also be induced by the same transport plan, so that the two maps must be a.e. inverses
of one another.

There is an extremely powerful characterisation of this in the quadratic case due to Y.
Brenier [6]. We show this as a result of the following Lemma from [25, Prop. 1.21].

Lemma 1.18. Let φ : Rd → R ∪ {−∞}, and define uφ : Rd → R ∪ {∞} by uφ(x) =
|x|2
2 −φ(x). Then uφc = (uφ)

∗ where * denotes the Legendre transform. Thus a function

φ is c-concave if and only if |x|2
2 − φ(x) is convex and l.s.c.

Proof. We simply compute

uφc(x) =
|x|2

2
− φc(x) = sup

y

|x|2

2
− 1

2
|x− y|2 + φ(y) = sup

y

(
⟨x, y⟩ −

(
|y|2

2
− φ(y)

))
.

Since the double c-transform of a c-concave function is itself, we thus have that the
double Legendre transform of uφ is itself, which characterises convexity.

Theorem 1.19 (Brenier’s Theorem). Let c(x, y) = 1
2 |x−y|

2, µ ∈ P(Rd), and u : Rd → R
convex (hence a.e. differentiable by Alexandrov theorem, Theorem 4.2). Then the map
T = ∇u : Rd → Rd is optimal for transport between µ and T#µ.

Proof. We prove only the case for µ absolutely continuous and only prove that the opti-
mal map is the gradient of a convex function (not that any convex gradient is necessarily
optimal) the general case can be seen as a consequence of c-cyclical monotonicity for
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the cost c(x, y) = −⟨x, y⟩ and its relation to the subgradient of a convex function due to
Rockafellar[23].

For µ a.c. the above theorem applies since the cost is strictly convex, and hence there
exists an optimal map between µ and T#µ, which is of the form

T (x) = x−∇φ(x) = ∇
(
|x|2

2
− φ(x)

)
,

where φ is a Kantorovich potential. The above lemma applies so that T is a.e. the
gradient of a convex function.

Remark 1.20. The above say that one can talk of optimal maps without reference to a
target measure for quadratic cost. Gradients of convex functions are monotone in every
variable, so most efficiently move mass around as no mass crosses over each other.

1.3 The Eulerian formulation: Benamou-Brenier

The Monge and Kantorovich frameworks are somewhat limited in describing continuous
transportation of mass, in the sense that they only consider the start and end point
t = 0 and t = 1, and not the evolution of the mass distribution for all t ∈ [0, 1], specified
by some family of measures ρt with ρ0 = µ and ρ1 = ν. In this section, we consider a
formulation due to JD. Benamou and Y. Brenier, originally presented in [3].

An important consequence of our existence theorem for (KP) (Theorem 1.2) is that we
can always assign a transport cost between two measures. We focus only on the case
X = Y = Rd and c(x, y) = |x − y|2, but it is easy to see that the following can be
generalised to c(x, y) = |x− y|p for arbitrary p ≥ 1. For any µ, ν ∈ P(Ω), we define the
Wasserstein distance

W2(µ, ν) := min

{∫
Rd×Rd

|x− y|2dγ : γ ∈ Π(µ, ν)

} 1
2

.

To guarantee that this is finite, we actually restrict to the subspace P2(Rd), which
consists of all those µ ∈ P(Rd) with finite second moments

∫
|x|2dµ <∞.

This satisfies the symmetry and positivity properties to justify calling this a distance
(if µ = ν then there is a coupling concentrated along the diagonal which thus has
zero transport cost). The triangle inequality is a little more involved, but can be seen
to follow from a disintegration argument found in [25, Lem. 5.5]. We note that this
distance behaves extremely differently to, for example, taking the L2 difference of two
probability densities. The W2 distance captures a horizontal transport movement, while
the aforementioned measures a vertical overlap.

We aim to understand the most efficient way to continuously deform one mass distribu-
tion into another, and this amounts to finding a geodesic in P2(Rd) (w.r.t the Wasser-
stein distance) between our measures µ and ν. Continuous deformations are naturally
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described by continuity equations. We will say a family of measures ρt ∈ P(Rd) and Rd
valued vector measure fluxes jt ∈ Md(Rd) for t ∈ [0, 1] solve the continuity equation

∂tρ+∇ · j = 0, (1.4)

if they are a distributional solution in the sense that for all ϕ ∈ C1
c (Rd × (0, 1))∫ 1

0

∫
Rd

∂tϕdρtdt+

∫ 1

0

∫
Rd

∇ϕ · djtdt = 0.

The following theorem we present similarly to the original paper [3, Prop. 1.1], noting
that the result can be significantly generalised to a very broad statement equating abso-
lutely continuous curves in P2 (in the W2 metric derivative sense) with solutions to the
continuity equation, as found in [25, Thrm. 5.14].

Theorem 1.21 (Benamou-Brenier). Let µ, ν ∈ P2(Rd), be compactly supported mea-
sures. We have

W2(µ, ν)
2 = inf

{∫ 1

0

∫
Rd

1

ρ
|j|2 : ρ0 = µ, ρ1 = ν

}
, (1.5)

where the inf is taken over all pairs of time-indexed measures ρt and fluxes jt satisfying
(1.4) with distributional boundary conditions ρ0 = µ and ρ1 = ν, and we define the
quantity

1

ρ
|j|2 :=

{
| djdρ |

2dρ if j ≪ ρ

+∞ otherwise.
(1.6)

Proof. We give a formal proof à la [3], making some additional regularity assumptions
along the way. A rigorous approach by convolution deals with the general case in [25,
Ch.5]. Take any pair of time-indexed measures ρt and fluxes jt that satisfy (1.4) with
boundary conditions ρ0 = µ and ρ1 = ν, and for which the RHS of (1.5) is finite. The
finiteness demands that for a.e. t we can define v = dj

dρ . We write the flow instead in

Lagrangian coordinates3, setting

X(x, 0) = x, ∂tX(x, t) := v(X(x, t), t).

Then for all test functions ϕ ∈ C1
c (Rd × (0, 1)) we have∫

Rd

∫ 1

0
ϕ(x, t)dρtdt =

∫
Rd

∫ 1

0
ϕ(X(x, t), t)dρ0dt,

and specifically X( · , 1) : Rd → Rd is a transport map between µ and ν as a consequence
of the boundary conditions. Consequently,∫ 1

0

∫
Rd

|v(x, t)|2dρtdt =
∫ 1

0

∫
Rd

|v(X(x, t), t)|2dρ0dt (1.7)

=

∫
Rd

∫ 1

0
|∂tX(x, t)|2dtdρ0 ≥

∫
Rd

|X(x, 1)−X(x, 0)|2dρ0

3Here we assume that v is suitably regular to justify this calculation.
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where the second line follows from Jensen’s inequality. The RHS is the Monge cost
for X( · , 1) and hence is greater than or equal to W2(µ, ν)

2. To show the infimum is
attained, let T minimise the Monge formulation and set Tt(x) = tT (x) + (1 − t)x as
a constant speed interpolation of the mass between x and T (x) for each point. Then
ρt = (Tt)#µ and jt = Tt#[(T − Id)µ]4 solve the Benamou-Brenier formulation, with

velocity vt =
dj
dρ = T (x) − x for each t ∈ [0, 1]. Thus returning to (1.7), the Benamou-

Brenier cost of this interpolation is∫ 1

0

∫
Rd

|vt|2dρtdt =
∫ 1

0

∫
Rd

|T (x)− x|2dρ0dt =W2(µ, ν)
2

as T minimises the Monge cost, which gives the result.

Remark 1.22. These interpolations with Tt only are admissible as Rd is convex, on a
more general space this may fail. One can easily construct some counter-examples for
which no geodesic exists when the domain is an open non-convex set.

In applications, one considers functionals on P2(Ω), and instead of desiring convexity
in the sense of linear interpolations, they wish for convexity along geodesics5 - which in
this case are continuity equation mass flows minimising (1.5). This theory was initially
developed by McCann in his thesis [20], here we present a simple version between uniform
measures as found in [16], the paper which will be the subject of Chapter 4.

Proposition 1.23 (McCann’s displacement convexity). Let E,F ⊂ Rd be two bounded
sets of equal measure and T minimise the Monge problem between χEdx and χFdx. Set
Tt(x) = (1− t)T (x) + tx, and set ρt = (Tt)#µ and jt = Tt#[(T − Id)µ] as a minimising
pair of the Benamou-Brenier formulation(1.5). Then ρt ≤ 1 for all t ∈ [0, 1].

Proof. We assume that ρ and j are absolutely continuous for all t, proof of this can be
found in [29, Prop. 5.9]. Thus the Jacobian equation (1) for each t reads

ρ(t, Tt(x)) detDTt(x) = χE(x),

which holds for a.e. x. For t = 1 in particular, detDT (x) = χE so that

(detDTt(x))
1
d = (det(1− t) Id+tT (x))

1
d ≤ (1− t)(det Id)

1
d + t(detDT (x))

1
d = 1

by concavity of det(·)1/d on non negative symmetric matricies, see Appendix. Thus
ρt ≤ 1 for all t.

4Here this is the push forward of the vector measure (T − Id)µ, given simply by the push forward in
each component.

5In Euclidean spaces there is no distinction here, geodesics are precisely interpolations. But here
interpolations are geodesics for the L2 distance between densities rather than the W2 distance.
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2 Morrey, Campanato and Hölder spaces

2.1 Definitions, Morrey ∼= Campanato

In this chapter, we study some function spaces for which certain energy-type semi-norms
are finite. We then establish that these spaces are embedded inside the Hölder spaces for
certain parameters. These results will be extremely useful for establishing the regularity
of solutions to Elliptic PDE and optimal transport maps in the following chapters.

We set Ω(x0, r) := Ω ∩ Br(x0) as the r “ball” inside Ω. Throughout the rest of this
Chapter, we assume Ω ⊂ Rn to be a connected bounded domain with the following
regularity property: There exists a constant CΩ > 0 such that for all x0 ∈ Ω and
r < DiamΩ we have

|Ω(x0, r)| ≥ CΩr
d. (2.1)

Equivalently, one could say
|Ω(x0, r)|
|Br(x0)|

≥ C(Ω) > 0,

so the proportion of any ball that lies in the domain is uniformly bounded away from
zero. Intuitively what this says it that each Ω(x0, r) must uniformly have enough of its
area inside Ω, so that we cannot have any sharp “cusps”. For example this fails if the
boundary of some Ω ⊂ R2 contains

f(x) =

{√
x x ≥ 0

√
−x x ≤ 0.

with the domain lying above this curve - then taking a sequence of points inside the
domain approaching x1, x2 = 0 and some fixed radius the proportion of a ball inside
vanishes. This condition will be important as the seminorms defined below relate an
energy on Ω(x0, r) to the growth of rσ, so making the domain have too sharp a cusp
somewhere could cause the seminorm to blow up not because the energy is too small, but
the region we are integrating over is. One can show (laboriously) that every Lipschitz
or C1 domain has this property.

We denote by Pk the space of polynomials in d variables of degree k or less, that is,
functions of the form

P (x) =
∑
|β|≤k

cβx
β; xβ := xβ11 x

β2
2 . . . xβdd

for multi-indices β. We will denote by β! the multi-factorial β1!β2! . . . βd!.
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Definition 2.1. The Hölder space Ck,α(Ω) for 0 < α ≤ 1 consists of all u ∈ Ck(Ω) with
finite Hölder seminorm

[u]k,α := sup
|β|=k
x ̸=y

|Dβu(x)−Dβu(y)|
|x− y|α

.

Remark 2.2. We have Ck,α = Pk if α > 1. Indeed let α = 1 + ε with ε > 0. Then for
any multi-index β with |β| = k,

|Dβu(x)−Dβu(y)|
|x− y|

≤ |x− y|ε.

The Hölder condition directly gives continuity and the above equation gives any direc-
tional derivative of Dβu vanishing everywhere for each |β| = k by taking the limit x→ y.
Thus u ∈ Pk.

Definition 2.3. For 1 ≤ q ≤ ∞ and σ > 0, we define the Morrey space Lq,σ(Ω) as those
u ∈ Lq(Ω) for which have finite Morrey seminorm:

⟨u⟩q,σ = sup
x0∈Ω
r>0

(
1

rσ

∫
Ω(x0,r)

|u(x)|qdx

) 1
q

<∞.

Before defining the Campanato space, we need the following projection result of Lq onto
Pk, as proved in [11].

Lemma 2.4. Fix u ∈ Lq(Ω(x0, r)) for 1 ≤ q <∞, x0 ∈ Ω and r > 0. The minimisation
problem

min

{∫
Ω(x0,r)

|u(x)− P (x)|qdx; P ∈ Pk

}
(2.2)

admits a solution, and it is unique.

Proof. We write a general element of Pk as P (x) =
∑

|β|≤k
aβ
β! (x − x0)

β. Thus we can
view the coefficients {aβ} as lying together in some Euclidian space Rm, and the quantity

f : Rm → R; f({aβ}) := ∥u− P∥qLq(Ω(x0,r))

depends continuously on these parameters. As a consequence of Lemma 2.13 proved in

the next section, if we take a sequence of polynomials Pi ∈ Pk such that
(∑

|β|≤k a
2
i,β

) 1
2 →

∞, then ∥Pi∥qLq(Ω(x0,r))
→ ∞, which in turn gives f({ai,β}) → ∞ by the reverse triangle

inequality. Thus we have the existence of at least one minimiser since the problem is
a coercive, continuous minimisation problem in a Euclidean space. Uniqueness follows
from the uniform convexity of Lq spaces.
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Definition 2.5. For 1 ≤ q < ∞, σ > 0 and k ∈ N, we define the Campanato space
Lq,σk (Ω) by all those u ∈ Lq(Ω) which have finite Campanato seminorm:

∥u∥k,q,σ := sup
x0∈Ω
r>0

(
1

rσ
min
P∈Pk

∫
Ω(x0,r)

|u(x)− P (x)|qdx

) 1
q

<∞.

Remark 2.6. In the case k = 0 the degree k polynomials are just constants, and for
q = 2 the minimiser of the infimum is given by ux0,r := −

∫
Ω(x0,r)

u, so that the Campanato
seminorm becomes

∥u∥0,2,λ = sup
x0∈Ω
r>0

(
1

rλ

∫
Ω(x0,r)

|u− ux0,r|2dx

) 1
2

.

Remark 2.7. Since we are always assuming our domain is bounded, for either space
Lq,σ or Lq,σk then we can fix any ρ > 0 and consider the sup over only ρ > r > 0 by
an open covering argument, due to the relative compactness of the domain. So really,
these conditions are local properties. As a consequence of this, fixing ρ = 1, for two
parameters σ < ς, we see that Lq,ςk ⊂ Lq,σk , Lq,ς ⊂ Lq,σ and Ck,ς ⊂ Ck,σ.

Remark 2.8. Membership of Lq,σ is saying that the Lq energy ϕx0(r) =
∫
Br

|u|qdx grows
in a “σ-Hölder” sense at each point with ϕx0(r) ≤ Crσ, and this growth is uniform in
space so C can be taken independent of x0. Membership of Lq,σk means that the qth power
of the Lq distance of u from locally being a degree k polynomial satisfies this Hölder type
growth condition instead. Unlike in Remark 2.2, we do not have the restriction σ < 1
for an interesting space, as the same argument is only enough to show that ϕ′x0(0) = 0
(the point being that ϕ denotes a different function at each point unlike before).

Theorem 2.9. If 0 ≤ σ < d and Ω satisfies (2.1) then L2,σ(Ω) ∼= L2,σ
0 (Ω).

Proof. For reasons of space, we only prove the direction L2,σ(Ω) ⊂ L2,σ
0 (Ω). For the

converse direction, see [14, Prop. 5.4]. We have∫
Ω(x0,r)

|u− ux0,r|2dx ≤ 22

(∫
Ω(x0,r)

|u|2dx+ |Ω(x0, r)||ux0,r|2
)
,

and Jensen’s inequality gives

|ux0,r|2 ≤
1

|Ω(x0, r)|

∫
Ω(x0,r)

|u|2dx.

This gives ∥u∥0,2,σ ≤ 23⟨u⟩2,σ as required.
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2.2 Campanato’s theorem

This section is devoted to proving the following regularity theorem due to Sergio Cam-
panato, originally shown in [11, Th. 5.III]. Although we only need the case k = 0 for
elliptic PDE as we can differentiate the equation, the general case will be the crux of
the proof of partial regularity for optimal transport maps.

Theorem 2.10 (Campanato’s Theorem). Let Ω satisfy (2.1) with σ > d + kq. Then
Ck,α(Ω) ∼= Lq,σk (Ω) for α = σ−d−kq

q and there exist global constants depending only on
k, q, σ, d,Ω giving the equivalence of the respective seminorms.

Remark 2.11. As a consequence of Remark 2.2, if further we have σ > d + (k + 1)q,
then Lq,σk (Ω) ∼= Pk. If a function can be approximated by a degree k polynomial this
closely, it must in fact be one.

Remark 2.12. The domain regularity property (2.1) is crucial for a uniform Hölder
seminorm in x. As previously mentioned, the Campanato seminorm condition says that
the distance from a degree k polynomial on Ω(x0, r) vanishes faster than rσ, but this
could be for two reasons: how well behaved u is, or if the Lebesgue measure of Ω(x0, r)
vanishes very quickly. Property (2.1) gives a uniform control on this, saying a certain
proportion of any such set must be in the domain. With Ω open not satisfying this, we
still get u ∈ Ck,αloc (Ω) however, by applying the result on an open ball around each point.

The direction Ck,α(Ω) ⊆ Lq,σk (Ω) is relatively intuitive. We might hope that k times dif-
ferentiable functions are closely approximated by degree k polynomials, and the natural
tool to do this - the degree k Taylor series at each x0 - turns out to be a good enough
candidate to establish this (although it is not necessarily the minimiser of (2.2) on each
Ω(x0, r)).

The converse is considerably more delicate, and we will need several preparatory results
to establish this. On account of Remark 2.8, the statement Lq,σk (Ω) ⊆ Ck,α(Ω) tells us
that if σ is suitably large then the distance locally of u from being a degree k polynomial
at each x0 grows so slowly with r that u must have k continuous derivatives - that if there
was any discontinuity of a Dβu at some x0 ∈ Ω, then here no element of Pk is locally
close enough. To give some intuition, we first sketch the structure of this direction of
the proof below.

[Sketch of the converse direction.] We follow Campanato’s original proof as presented
in [11]. From now on, fix 1 ≤ q < ∞, k ∈ Z≥0 and u ∈ Lq,σk (Ω). For each x0 ∈ Ω and
r > 0 denote the unique minimiser (c.f. Lemma 2.2)

P (x, x0, r) := argmin

{∫
Ω(x0,r)

|u(x)− P (x)|qdx; P ∈ Pk

}
. (2.3)

One should view this as a polynomial in x, with x0 and r fixed.
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[Step 1.] We begin by proving that at each x0 ∈ Ω, the value at x0 of the minimiser on
Ω(x0, r) converges as r → 0, as do all of its derivatives of degree k or less. That is, for
each multi-index |β| ≤ k,

aβ(x0, r) := DβP (x, x0, r)|x=x0 (2.4)

has a limit as r → 0. To establish this we first prove some general estimates on the value
of derivatives |DβP (x0)| of degree k polynomials in terms of their Lq norms on Ω(x0, r).
We apply these estimates to the sequence of polynomials

Ph(x) = Dβ
[
P (x, x0, r2

−h)− P (x, x0, r2
−h−1)

]
to show the sequence DβP (x, x0, r2

−h)|x=x0 is Cauchy, further deducing its limit is
independent of the initial choice of r. For each β, we call this limit

vβ(x0) := lim
r→0

aβ(x0, r). (2.5)

[Step 2.] Next, we establish the Hölder continuity of each vβ when |β| = k, and their
differentiability relationship between their derivatives when |β| ≤ k− 1. Specifically, we
show that for each orthonormal basis vector ei,

∂vβ
∂xi

(x) = vβ+ei(x); for i = 1, 2, . . . , d.

This is established via an inductive argument backwards from the case |β| = k. The
crucial point is establishing also the convergence as r → 0 of aβ(x0+ eir, 2|r|) to vβ(x0),
the same limit as that of a(x0, r), as we approach along offset balls.

[Step 3.] Finally, we prove that v(0) = u a.e. (at each Lebesgue point of u) which

completes the proof. Here (0) ∈ Rd is the empty multi-index.

2.2.1 Limits for the derivatives of the minimising polynomials

We first establish the convergence of the coefficients of minimising polynomials at each
point. These results correspond roughly to [11, Sect. 2&3]

Lemma 2.13. Let P ∈ Pk, and λ > 0. There exists C(k, q, d, λ) > 0 s.t. for each
E ⊆ Br(x0) with |E| ≥ λrd, and any multi-index |β| ≤ k,

|DβP (x0)|q ≤
C

rd+q|β|

∫
E
|P (x)|qdx.

Proof. Denote by τk ⊂ Pk those polynomials who’s coefficients satisfy

P (x) =
∑
|β|≤k

aβx
β;

∑
|β|≤k

a2β = 1.
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Let F denote all measurable functions supported inside B1(0) with 0 ≤ f ≤ 1 and∫
B1
fdx ≥ λ. We then define the quantity

γ(λ) = inf
P∈τk f∈F

∫
B1

|P (x)|qf(x)dx.

We show this is a minimum. Take sequences Pi, fi approaching the infimum, then since
the coefficients of Pi are uniformly bounded and there are finitely many, we can apply
Bolzano-Weierstrass to each coefficient sequence to obtain a convergent subsequence of
degree k polynomials, and the limit clearly lies in τk also.

Similarly, we can pass to a weak L2 limit for f since they have fi ≤ 1 so are uniformly
bounded in L2 norm by |B1|. It is clear the class F is stable under weak convergence so
the limit is also a member.

Consequently, γ(λ) > 0, since the P -lim must be ̸= 0 a.e as polynomial, and the f -
lim must be positive on a non-negligible set by the integral condition. Thus by taking
f = χE we have that for all P ∈ τk,∫

E
|P (x)|qdx ≥ γ(λ) if |E| ≥ λ.

Now for a general P ∈ Pk, P (x)
(∑

|β|≤k a
2
β

)− 1
2 ∈ τk, so for each E ⊂ B1 with |E| ≥ λ,∑

|β|≤k

a2β


q
2

≤ 1

γ(λ)

∫
E
|P (x)|qdx

and specifically

|aβ|q ≤
1

γ(λ)

∫
E
|P (x)|qdx. (2.6)

Now take P ∈ Pk and E ⊂ Br(x0) measurable satisfying the regularity property. The
change of variables T (x) = x−x0

r gives∫
E
|P (x)|qdx = rd

∫
T (E)

|P (x0 + ry)|qdy,

with T (E) ⊂ B1 and |T (E)| = 1
rd

∫
E dx ≥ λ. Taylor series gives

P (x0 + ry) =
∑
|β|≤k

r|β||DβP (x0)|
β!

yβ,

and so (2.6) applied to the above polynomial gives the result with C = (β!)q

γ(λ) .

Lemma 2.14. Let u ∈ Lq,σk (Ω), and P (x, x0, r) denote the minimiser of (2.3). There
exists C(q, σ) > 0 s.t. for all x0, r and h ∈ Z≥0,∫

Ω(x0,r2−h−1)

∣∣P (x, x0, r2−h)− P (x, x0, r2
−h−1)

∣∣qdx ≤
(
C∥u∥qk,q,σ

)
2−hσrσ.
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Proof. We have

|P (x, x0, r2−h)− P (x, x0, r2
−h−1)|q ≤2q|P (x, x0, r2−h)− u(x)|q

+ 2q|P (x, x0, r2−h−1)− u(x)|q,

So that by definition of P as the minimiser of (2.2) and that Ω(x0, r2
−1−h) ⊂ Ω(x0, r2

−h),∫
Ω(x0,r2−1−h)

∣∣P (x, x0, r2−h)− P (x, x0, r2
−h−1)

∣∣qdx
≤2q

∥∥P ( · , x0, r2−h)− u
∥∥
Lq(Ω(x0,r2−h))

+ 2q
∥∥P ( · , x0, r2−1−h)− u

∥∥
Lq(Ω(x0,r2−1−h))

≤2q(1 + 2−σ)∥u∥qk,q,σ2
−hσrσ,

since u ∈ Lq,σk , which gives the estimate with C = 2q(1 + 2−σ).

Lemma 2.15. Let u ∈ Lq,σk (Ω), Ω satisfy (2.1) and P (x, x0, r) be the minimiser of (2.3)
and aβ(x, r) as (2.4). There exists C(k, q, σ, d,Ω) > 0 s.t. for all x0, r, i ∈ Z≥0 and
|β| ≤ k,

|aβ(x0, r)− aβ(x0, r2
−i)| ≤ (C∥u∥k,q,σ)

(
i−1∑
h=0

2
h
(

d+|β|−σ
q

))
r

σ−d−q|β|
q .

Proof. Fix x0, r, i, β, then the triangle inequality gives

∣∣aβ(x0, r)− aβ(x0, r2
−i)
∣∣ ≤ i−1∑

h=0

∣∣aβ(x0, r2−h)− aβ(x0, r2
−h−1)

∣∣
=

i−1∑
h=0

∣∣Dβ
[
P (x0, x0, r2

−h)−DβP (x0, x0, r2
−h−1)

]∣∣.
Applying Lemma 2.131 to the polynomials Ph := Dβ

[
P (x, x0, r2

−h)− P (x, x0, r2
−h−1)

]
in the sum gives

|aβ(x0, r)− aβ(x0, r2
−i)| ≤ C

1
q

1 r
− d

q
−|β|

i−1∑
h=0

2
(h+1)

(
d
q
+|β|

)(∫
Ω(x0,r2−1−h)

|Ph|qdx

) 1
q

,

then applying Lemma 2.14 to each integral gives the required estimate.

The consequences of the above are that for suitable parameters of our space, a limit for
aβ(x0, r) exists at each x0 as r → 0, presented as in [11, Lem. 3.4].

1Here, we pickup the domain constant dependence.
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Proposition 2.16. Let u ∈ Lq,σk (Ω), Ω satisfy (2.1) and σ > d+ sq for some Z≥0 ∋ s ≤
k. For all multi-indices |β| ≤ s, there exist functions vβ : Ω → R s.t. for all x0, r,

|aβ(x0, r)− vβ(x0)| ≤ (C∥u∥k,q,σ) r
σ−d−q|β|

q .

where C(σ, q, k, d,Ω) > 0. Consequently, aβ(x0, r) → vβ(x0) uniformly in x0 as r → 0.

Proof. Fix β, r, x0 with |β| ≤ s. We prove that the sequence aβ(x0, r2
−i) converges as

i→ ∞. For i, j with j > i, Lemma 2.15 gives

|aβ(x0, r2−j)− aβ(x0, r2
−i)| ≤ C3∥u∥k,q,σ

(
j−1∑
h=i

2
h
(

d+|β|−σ
q

))
r

(
σ−d−q|β|

q

)
.

Since |β| ≤ s and σ > d+ sq the exponent of 2 is negative, so the tail sum

∞∑
h=i

2
h
(

d+|β|−σ
q

)
→ 0

for i→ ∞, as the tail of a convergent geometric series. Thus

|aβ(x0, r2−j)− aβ(x0, r2
−i)| ≤ Cr

(
σ−d−q|β|

q

)
,

so that aβ(x0, r2
−i) is a Cauchy sequence in i, as the r exponent is positive. We now

show the limit does not depend on r. Let r1 ≤ r2, then Lemma 2.13 gives

|aβ(x0, r12−i)− aβ(x0, r22
−i)|

≤C1
2i(n+|β|q)

r
d+|β|q
1

∫
Ω(x0,r12−i)

∣∣P (x, x0, r12−i)− P (x, x0, r22
−i)
∣∣qdx

≤C12
q 2

i(d+|β|q)

r
d+|β|q
1

(∫
Ω(x0,r12−i)

∣∣P (x, x0, r12−i)− u(x)
∣∣qdx

+

∫
Ω(x0,r22−i)

∣∣P (x, x0, r22−i)− u(x)
∣∣qdx)

≤C12
q∥u∥qk,q,σ

(
rσ1 + rσ2

r
d+|β|q
1

)
2−i(σ−d−|β|q) → 0 as i→ ∞.

Thus the limit is independent of r, so the functions vβ are well defined. For uniform con-
vergence, again from Lemma 2.15 and that the sum is convergent so uniformly bounded
in i, we have

|aβ(x0, r)− aβ(x0, r2
−i)| ≤ (C∥u∥k,q,σ) r

σ−d−q|β|
q .

Passing to the i→ 0 limit we have now the convergence uniformly in r.
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2.2.2 Continuity of the limit functions and differentiability relations

We will see that vβ = Dβu (derivatives which a priori u need not have). First we show
v(0) ∈ Ck,α and some differentiability relations, as in [11, Lem. 3.2, Prop. 4.1].

Lemma 2.17. Let u ∈ Lq,σk (Ω) and Ω satisfy (2.1). There exists C(k, q, d, σ,Ω) > 0
such that for each pair of points x0, y0 ∈ Ω and any multi-index |β| = k,

|aβ(x0, 2|x0 − y0|)− aβ(y0, 2|x0 − y0|)|q ≤
(
C∥u∥qk,q,σ

)
|x0 − y0|σ−d−kq.

Proof. Set r = |x0 − y0|, then

|P (x, x0, 2r)− P (x, y0, 2r)|q ≤2q|P (x, x0, 2r)− u(x)|q

+ 2q|P (x, y0, 2r)− u(x)|q.

Integrating, noting Ω(x0, r) ⊂ Ω(y0, 2r) and using u ∈ Lq,σk (Ω) gives∫
Ω(x0,r)

|P (x, x0, 2r)− P (x, y0, 2r)|qdx

≤2q
∫
Ω(x0,2r)

|P (x, x0, 2r)− u(x)|qdx+ 2q
∫
Ω(y0,2r)

|P (x, y0, 2r)− u(x)|qdx

≤2q+σ+1∥u∥qk,q,σr
σ.

Finally, Lemma 2.132 applied to P (x) = P (x, x0, 2r)− P (x, y0, 2r), combined with that
the kth order derivatives are constant so we can be evaluated anywhere, we find

|aβ(x0, 2r)− aβ(y0, 2r)|q ≤
(
C∥u∥qk,q,σ

)
rσ−d−kq.

Proposition 2.18. Let u ∈ Lq,σk (Ω), Ω satisfy (2.1) and σ > d+ kq. Then for |β| = k

we have vβ ∈ C0,α(Ω) with α = σ−d−kq
q , where vβ are the limits of the derivatives of the

minimisers from Proposition 2.16.

Proof. Fix β with |β| = k and x, y ∈ Ω with r := |x − y| ≤ DiamΩ
2 . The triangle

inequality gives

|vβ(x)− vβ(y)| ≤ |vβ(x)− aβ(x, 2r)|+ |vβ(y)− aβ(y, 2r)|+ |aβ(x, 2r)− aβ(y, 2r)|.

Proposition 2.16 controls the first two terms uniformly in the required fashion and
Lemma 2.17 controls the third, giving the relation for |x − y| ≤ DiamΩ

2 . For general
|x− y|, simply cover Ω with balls of radius < DiamΩ

8 , and since the Ω is connected and
bounded, a finite subcover gives us an upper bound on the number of steps a piecewise
affine polygonal path from x to y with vertices inside Ω should take, so by repeatedly
applying the triangle inequality along the vertices of any such path we get the Hölder
condition for any x, y ∈ Ω.

2Here, again we pick up the dependency on the domain regularity by applying this lemma.
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We now show the differentability relations, corresponding to [11, Thrm. 4.II]. Here we
present the proof with a different induction assumption than in the original paper, but
with the same result.

Proposition 2.19. Let u ∈ Lq,σk (Ω), Ω satisfy (2.1) and σ > d + kq with k ≥ 1. For
each multi index with |β| ≤ k− 1, the functions vβ defined in Proposition 2.16 have first
order partial derivatives in Ω, and they satisfy

∂vβ
∂xi

= vβ+ei for i = 1, 2, . . . , d.

Proof. Fix β with |β| ≤ k − 1. The previous proposition gives the continuity of all
vγ with |γ| = k, so we proceed by induction backwards from this case, assuming the
hypothesis that vγ are continuous for all γ ≥ β (for the partial ordering of multi-indices,
where all entries γi ≥ βi). Let x0 ∈ Ω and r be suitably small so that x0 + eir ∈ Ω also.
Consider

aβ(x0 + eir, 2|r|)− aβ(x0, 2|r|)
r

=
Dβ
[
P (x0, x0 + rei, 2|r|)− P (x0, x0, 2|r|)

]
r

+
Dβ
[
P (x0 + rei, x0 + rei, 2|r|)− P (x0, x0 + rei, 2|r|)

]
r

:=(I) + (II).

We claim that (I) → 0 and (II) → vβ+ei(x0) as r → 0. For (I), as in the proof of
Lemma 2.173 and using Lemma 2.13 we deduce

|(I)|q ≤ 1

|r|q
C

|r|n+|β|q 2
q+σ+1∥u∥qk,q,σ|r|

σ = C(k, q, σ, β,Ω)rσ−d−(|β|+1)q

which vanishes for r → 0 as the exponent of |r| is positive4.

For (II), set Pr(x) := P (x, x0+rei, 2|r|). We claim the induction assumption of continu-
ity gives all coefficients of the polynomial DβPr(x) converging (a priori they could have
diverged). Indeed continuity gives that for each γ ≥ β, we have DγPr(x0) → vγ(x0).
Working backwards from the highest order derivatives, with |γ| = k DγPr(x) is constant,
and is equal (up to a factor of γ!) to the xγ coefficient of Pr. Then stepping back one
order at a time, all of the coefficients of DγPr(x) must have limits, and these limits
necessarily must be vγ(x) times the corresponding factorials. That is, setting

DβPr(x) :=
∑
β≤γ
|γ|≤k

cr,γx
(γ−β); P (x) :=

∑
β≤γ
|γ|≤k

vγ(x0)

(γ − β)!
(x− x0)

(γ−β),

3Here we can apply this since |r| = |(x0 + rei)− x0|, Lemma 2.17 certainly does not hold for any r.
4We have σ − d− (|β|+ 1)q ≥ σ − d− kq > 0 as here we are assuming |β| ≤ k − 1
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we have DβPr → P uniformly on compacta as r → 0. Since these are analytic, also all
derivatives converge and hence we get5

lim
r→0

DβPr(x0 + rei)−DβPr(x0)

r
= Dβ ∂P

∂xi

∣∣∣∣
x=x0

= vβ+ei(x0).

We now show that

lim
r→0

vβ(x0 + rei)− vβ(x0)

r
= lim

r→0

aβ(x0 + eir, 2|r|)− aβ(x0, 2|r|)
r

which would establish the result. From Proposition 2.16,∣∣∣∣vβ(x0)− aβ(x0, 2|r|)
r

∣∣∣∣ ≤ C|r|
(

σ−d−q(|β|+1)
q

)
.

Since |β| ≤ k − 1 the |r| exponent is positive so this quantity vanishes with r. An
identical statement also holds replacing x0 with x0 + rei. Finally, we note that

vβ(x0 + rei)− vβ(x0)

r
=
aβ(x0 + eir, 2|r|)− aβ(x0, 2|r|)

r

+
vβ(x0 + rei)− aβ(x0 + rei, 2|r|)

r

+
aβ(x0, 2|r|)− vβ(x0)

r
,

which gives the equivalence of limits by the above discussion.

2.2.3 Campanato ∼= Hölder

Equipped with the above, we can now finally prove both directions of Theorem 2.10,
corresponding to [11, Thrm. 5.III]

Proof that Campanato functions are Hölder. The previous sections give v(0) ∈ Ck,α(Ω),

we now prove that v0 = u a.e. where (0) ∈ Rd is the zero multi-index. We show equality
holds at each Lebesgue point of u, points x0 such that

lim
r→0

−
∫
Ω(x0,r)

|u(x)− u(x0)|qdx = 0.

For such an x0, we have

|a(0)(x0, r)− u(x0)|q

≤ C(q)

(
|P (x, x0, r)− a(0)(x0, r)|q + |P (x, x0, r)− u(x)|q + |u(x)− u(x0)|q

)
.

5If fr → f uniformly and xr → x then fr(xr) → f(x). In this case, fr(x) is the difference quotient.
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Average integrating over Ω(x0, r) and using the regularity property (2.1) gives

|a(0)(x0, r)− u(x0)|q ≤
C(q)

CΩrd

∫
Ω(x0,r)

|P (x, x0, r)− a(0)(x0, r)|qdx

+
C(q)

CΩrd

∫
Ω(x0,r)

|P (x, x0, r)− u(x)|qdx

+
C(q)

|Ω(x0, r)|

∫
Ω(x0,r)

|u(x)− u(x0)|qdx

:= (I) + (II) + (III).

We claim all terms vanish as r → 0, giving limr→0 a(0)(x0, r) = v(0)(x0). (III) vanishes
by the definition of a Lebesgue point. For (II), by the definition of Lq,σk

(II) ≤ C(q,Ω)∥u∥qk,q,σr
σ−d,

which also is infinitesimal with r. Finally for (I), using Proposition 2.16

(I) =
C(q,Ω)

rd

∫
Ω(x0,r)

∣∣∣ ∑
1≤|β|≤k

aβ(x0, r)(x− x0)
β
∣∣∣qdx

≤C(q, k, d,Ω)
∑

1≤|β|≤k

∣∣aβ(x0, r)∣∣r|β|q → 0,

as the limits of aβ(x0, r) are controlled uniformly as r → 0.

Proof that Hölder functions are Campanato. Let u ∈ Ck,α(Ω), fix x0 and consider the
degree k − 1 Taylor polynomial of u at x0. For each x there exists some yx ∈ Rn on the
line segment between x and x0 with

u(x) =
∑

|β|≤k−1

Dβu(x0)

β!
(x− x0)

β +
∑
|β|=k

Dβu(yx)

β!
(x− x0)

β.

by the Lagrange form of the remainder. Thus the distance of u from its degree k Taylor
polynomial is controlled by∣∣∣∣u(x)− ∑

|β|≤k

Dβu(x0)

β!
(x− x0)

β

∣∣∣∣ =∣∣∣∣ ∑
|β|=k

Dβu(yx)−Dβu(x0)

β!
(x− x0)

β

∣∣∣∣
≤[u]k,α

∑
|β|=k

1

β!
|x− x0|

σ−d−kq
q |x− x0|k

= C(k)[u]k,α|x− x0|
σ−n
q ,

where we used that (x−x0)β ≤ |x−x0|k for any |β| = k. Integrating over Ω(x0, r) gives

min
P∈Pk

∫
Ω(x0,r)

|u(x)− P (x)|qdx ≤ C(k)[u]qk,αr
σ,

so that u ∈ Lq,σk (Ω), and Theorem 2.10 is proven.
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3 Regularity for elliptic equations

Let Ω ⊂ Rd be a bounded, open connected set. In this chapter, we discuss the regularity
of solutions to scalar linear elliptic PDE of the form

∇ · (A∇u) = ∇ · F in Ω, (3.1)

for a vector field F : Ω → Rd and a matrix-valued A : Ω → Rd×d which is always
assumed to be uniformly positive definite and bounded; in the sense that there exists
0 < λ ≤ Λ such that for each x ∈ Ω,

λ|y|2 ≤ yTA(x)y ≤ Λ|y|2 for all y ∈ Rd.

We call u a “solution” to (3.1) if u ∈ H1(Ω) and∫
Ω
(A∇u) · ∇φdx =

∫
Ω
f · ∇φdx for all φ ∈ H1

0 (Ω),

and we do not consider any boundary data on ∂Ω, choosing to focus on the interior
regularity. Where it is clear throughout the chapter, we take BR(x0) = BR as well as
ignoring integration measures where clear, to ease some of the notation.

3.1 Interior Sobolev regularity for L2 coefficients

Our goal in this section is to establish Sobolev regularity of solutions to our PDE (3.1).
The idea is to consider a difference quotient

Dh
i u(x) :=

u(x+ hei)− u(x)

h
for x ∈ Ωi,h := {x ∈ Ω : x+ hei ∈ Ω} ,

for a unit vector ei. This acts as a sort of discrete derivative, which we will show is
uniformly bounded over h in L2 norm for solutions to our PDE. Then we use that
bounded sequences in reflexive Banach spaces have a weakly convergent subsequence to
deduce a limit as h→ 0. We show that the limit of this satisfies the required properties
to be a weak derivative of u, thus giving higher regularity (we actually do this process
for ∇u, not u). This section follows [14, Ch. 4.2, 4.3], as well as [26, Ch. 5.2].

3.1.1 The method of difference quotients

We begin by gathering some results regarding difference quotients, as found in [14, Ch.
4.3].
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Proposition 3.1. Let u ∈ H1(Ω), then Dh
i u ∈ H1(Ωi,h) and the commutativity with

weak derivatives D(Dh
i u) = Dh

i (Du) holds. If either u, v ∈ H1(Ω) are compactly sup-
ported in Ω then for suitably small h,∫

Ω
uDh

i vdx = −
∫
Ω
D−h
i uvdx.

We also have the Leibniz rule

Dh
i (uv)(x) = u(x+ hei)D

h
i v(x) +Dh

i u(x)v(x).

Proof. The first two claims follow directly from the linearity of Sobolev spaces and weak
derivatives. For the second, direct calculation yields∫

Ω
uDh

i v +D−h
i uvdx =

1

h

∫
Ω
u(x)v(x+ hei)− u(x− hei)v(x)dx. (3.2)

Since one of the functions is compactly supported the infimum distance of the support
from the boundary is positive, so for h small, the change of variables on the first term
y = x+ hei keeps the support of uDh

i v and D−h
i uv inside Ω, and thus the two terms in

(3.2) cancel out. The Leibniz rule is just a direct computation.

Lemma 3.2. Let 1 < p < ∞. For every Ω0 ⋐ Ω, u ∈ W 1,p(Ω), i = 1, . . . , n and
|h| < Dist(Ω0,Ω)/2 we have

∥Dh
i u∥Lp(Ω0) ≤ ∥∇u∥Lp(Ω).

Proof. since C∞(Ω) is dense in W 1,p(Ω) and the inequality is stable under Lp, hence
Sobolev convergence, we need only prove it for u ∈ C∞(Ω). The fundamental theorem
of calculus gives

Dh
i u(x) = −

∫ h

0

∂

∂xi
u(x+ tei)dt,

then we use Jensen’s inequality followed by Fubini’s theorem,

∥Dh
i u∥

p
Lp(Ω0)

=

∫
Ω0

∣∣∣∣−∫ h

0

∂

∂xi
u(x+ tei)dt

∣∣∣∣p dx
≤
∫
Ω0

−
∫ h

0
|∇u(x+ tei)|pdtdx

≤−
∫ h

0

∫
Ω
|∇u|pdxdt = ∥∇u∥pLp(Ω).

Proposition 3.3. Let 1 < p <∞ and Ω0 ⋐ Ω. Let u ∈ Lp(Ω) be such that there exists
M > 0 with

∥Dh
i u∥Lp(Ω0) ≤M for all |h| < Dist(Ω0,Ω) and each i = 1, . . . n.
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Then u ∈ W 1,p(Ω0) with ∥∂xiu∥Lp(Ω0) ≤ M , and Dh
i u → ∂xiu in Lp(Ω0) as h → 0 for

each i.

Proof. Fix i, by the reflexivity of Lp(Ω) and that Dh
i u is uniformly bounded in h, we

have a weakly converging subsequence hm with limit we call g. By definition of weak
convergence in Lp as a duality product with Lq with q the Hölder conjugate, and that
C∞
c (Ω0) ⊂ Lq(Ω0), we have for all φ ∈ C∞

c (Ω0),∫
Ω0

gφdx = lim
hm→0

∫
Ω0

Dhm
i uφdx

= lim
hm→0

−
∫
Ω0

uD−hm
i φdx

=−
∫
Ω0

u
∂φ

∂xi
dx.

Thus g = ∂u
∂xi

in the sense of distributions, so the distributional derivative has an Lp

representative, hence u ∈ W 1,p(Ω0). For the strong convergence, taking an arbitrary
v ∈ C∞(Ω0),

Dh
i u− ∂u

∂xi
= Dh

i (u− v) +
∂

∂xi
(u− v) + (Dh

i v −
∂v

∂xi
),

so that∥∥∥∥Dh
i u− ∂u

∂xi

∥∥∥∥
Lp(Ω0)

≤
∥∥∥Dh

i (u− v)
∥∥∥
Lp(Ω0)

+

∥∥∥∥ ∂

∂xi
(u− v)

∥∥∥∥
Lp(Ω0)

+

∥∥∥∥(Dh
i v −

∂v

∂xi
)

∥∥∥∥
Lp(Ω0)

.

Taking v arbitrarily close to u by density of C∞(Ω0) in W 1,p(Ω0) makes the first two
terms arbitrarily small. Then since we have strong convergence of the difference quotient,
the third term goes to 0 as hm → 0.

The following inequality acts as a sort of “reverse-Poincaré” inequality and will be crucial
for uniformly bounding the difference quotient. This is adapted from the case for systems
found in [14, Ch. 4.2].

Theorem 3.4 (Caccioppoli inequality). Let u solve (3.1) with A having eigenvalues
between 0 < λ ≤ Λ for each x. Then there exists a constant C(λ,Λ) > 0 such that for
any r < R,∫

Br(x0)
|∇u|2 ≤ C

(
1

(R− r)2

∫
BR(x0)\Br(x0)

(u− a)2 +

∫
BR(x0)

|F |2
)

for every x0 ∈ Ω and a ∈ R.

Proof. Take a cut-off function η ∈ C∞
c (Ω) with the following properties:
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1. η ≡ 1 on Br and η ≡ 0 on Ω \BR
2. 0 ≤ η ≤ 1
3. |∇η| ≤ 2

R−r .
1

Considering the test function φ = η2(u− a) with ∇φ = η2∇u+ 2η(u− a)∇η gives∫
BR

η2(A∇u) · ∇u =−
∫
BR

2η(u− a)(A∇u) · ∇η

+

∫
BR

2η(u− a)∇η · F +

∫
BR

η2∇u · F

:= (I) + (II) + (III). (3.3)

By uniform positive definiteness and properties of η we also have∫
Br

|∇u|2 ≤
∫
BR

η2|∇u|2 ≤ 1

λ

∫
BR

η2(A∇u) · ∇u. (3.4)

So if we can bound the three terms (3.3) suitably then we are done. These can all be

estimated using Young’s inequality 2AB ≤ εA2 + B2

ε for ε > 0. For the first integral,

(I) = −
n∑

i,j=1

∫
BR

Aij(x)2η(u− a)
∂η

∂xi

∂u

∂xj

≤
n∑

i,j=1

∫
BR

Aij(x)

ε

(
(u− a)

∂η

∂xi

)2

+ εAij(x)

(
η
∂u

∂xj

)2

≤ Λ

ε

∫
BR

(u− a)2|∇η|2 + εΛ

∫
BR

η2|∇u|2

≤ 4Λ

ε(R− r)2

∫
BR\Br

(u− a)2 + εΛ

∫
BR

η2|∇u|2,

where we used that ∇η = 0 on the smaller ball as well as the bound |∇η| ≤ 2
R−r on the

final line. Identical estimates give

(II) ≤ 4

ε(R− r)2

∫
BR\Br

(u− a)2dx+ ε

∫
BR

|F |2

(III) ≤ ε

2

∫
BR

η2|∇u|2dx+
1

2ε

∫
BR

η2|F |2.

Then choose ε such that λ > ε(Λ + 1/2) so that the coefficient of the η2|∇u|2 term on
the RHS of (3.3) is less than λ so we can rearrange considering (3.4), thus giving the
required estimate.

1We can choose such an η with this bound since to interpolate linearly down from 1 to 0 as we move
out radially from r to R would give a gradient of 1/(R − r), so we allow the factor of 2 to smooth out
either end.

31



3.1.2 Sobolev regularity

Equipped with the above, we now establish Sobolev regularity, as in [14, Thrm. 4.9].

Theorem 3.5 (Interior regularity). Let u solve (3.1) with the additional assumption of
the coefficients that F ∈ H1(Ω) and A is Lipschitz. Then u ∈ H2

loc(Ω).

Proof. By density, for a weak solution it is sufficient to only test against φ ∈ C∞
c (Ω).

Since Ω is open, the support of each φ is bounded away from the boundary. Thus for
h≪ 1, we can also test against the translated φ(x− hek) as its support lies in Ω. Then
after a change of variables, we ascertain∫

Ω
(A(x+ hei)∇u(x+ hei)) · ∇φ(x) =

∫
Ω
F (x+ hei) · ∇φ(x).

Subtracting the un-transposed weak formulation from the above and dividing by h gives∫
Ω
Dh
i (A∇u) · ∇φ =

∫
Ω
Dh
i F · ∇φ∫

Ω
(A∇Dh

i u) · ∇φ+

∫
Ω
(Dh

i A∇u) · ∇φ =

∫
Ω
Dh
i F · ∇φ,

where Dh
i acts component-wise on vectors/ matrices, and we used the Leibniz rule for

the commutativity of the difference quotient with the derivative from Proposition 3.1.
Now restricting to any ball B2R(x0) ⊂ Ω, this tells us that Dh

i u is a weak solution to
the PDE in v

∇ · (A∇v) = ∇ · (Dh
i F −Dh

i A∇u), (3.5)

where here we considered u as a fixed term. The Caccioppoli inequality gives∫
BR

|Dh
i ∇u|2 ≤

C

R2

∫
B2R

(Dh
i u)

2 + C

∫
B2R

|Dh
i F |2 + C

∫
B2R

|Dh
i A|2|∇u|2

:=(I) + (II) + (III).

Since u and F are both Sobolev, the L2 norms of their derivatives are finite and provide
an upper bound for that of the difference quotients, so by Proposition 3.2 (I) and (II)
are uniformly bounded in h. The Lipschitz assumption on A gives a uniform bound
to |Dh

i A(x)|, so again using Proposition 3.2 combined with ∇u ∈ L2, the third term is
also uniformly bounded in h. Thus Dh

i ∇u is uniformly bounded in L2 norm over h, so
applying Proposition 3.3 to each component followed by a covering argument establishes
the regularity u ∈ H2

loc(Ω).

We can extend the above to equations with higher-order coefficients by induction, à la
[14, Thrm. 4.11].

Theorem 3.6 (Higher order regularity). Let u solve (3.1), and assume the additional
regularity of the coefficients
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1. F ∈ Hk+1(Ω),
2. Aij ∈ Ck,1, so that DβAij is Lipschitz for any multi-index |β| = k.

Then u ∈ Hk+2
loc (Ω).

Proof. The case k = 0 is precisely Theorem 3.5, so we proceed by induction assuming
the result holds for k − 1. Take ψ ∈ C∞

c (Ω) and test against φ := ∂ψ
∂xi

, then integrating
by parts gives ∫

Ω

∂

∂xi
(A∇u) · ∇ψ =

∫
Ω

∂F

∂xi
· ∇ψ∫

Ω
A

(
∇ ∂u

∂xi

)
· ∇ψ =

∫
Ω

(
− ∂A

∂xi
∇u+

∂F

∂xi

)
· ∇ψ.

The above gives ∂u
∂xi

as a weak solution to the PDE ∇ · (A(x)∇u) = ∇ · F̃ , where

F̃ := − ∂A

∂xi
∇u+

∂F

∂xi
.

Note that F̃ ∈ Hk
loc(Ω), by the induction assumptions and that any kth derivative of A is

Sobolev2. Thus the induction assumption gives ∂u
∂xi

∈ Hk+1
loc (Ω0) so that u ∈ Hk+2

loc (Ω0).
The estimate also follows inductively from the computations.

Corollary 3.6.1. Let u be a weak solution of ∇ · (A(x)∇u) = ∇ · F , with A uniformly
positive definite and bounded, with F,A ∈ C∞(Ω). Then u ∈ C∞(Ω).

Proof. The above theorem gives u ∈ Hk
loc(Ω) for all k ≥ 0, so the result follows by

Sobolev embeddings.

3.2 Schauder estimates: interior Hölder regularity

In this section, we discuss Hölder regularity of solutions based on that of the coefficients.
It turns out that this is best attacked obliquely, making use of the theory of Campanato
and Hölder spaces developed in the previous chapter. This approach is well-motivated
since the weak formulation of the PDE is an integral condition, so showing energy bounds
seems tractable.

2Lipschitz functions are always locally Sobolev, and Sobolev on bounded domains by Rademacher’s
theorem.
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3.2.1 Energy growth estimates

To prove that solutions u to our PDE lie in Lq,σ or Lq,σ0 spaces, we need to show that
the growth of energies of the form ϕ : [0,R) → [0,R)

ϕ(r) =

∫
Br

|u− ux0,r|2dx or ϕ(r) =

∫
Br

|u|2dx

satisfy σ growth conditions, being controlled globally by constants ϕ(r) ≤ Crσ. To help
establish this we will need some estimates and the following lemma, found in both [14,
Ch. 5] and [26, Ch. 5].

Lemma 3.7 (Campanato iteration). Let ϕ : [0, R0] → R+ be an increasing function,
which for r < R satisfies

ϕ(r) ≤ A
(
ε+

( r
R

)α)
ϕ(R) +BRβ

for some constants A,B, ε ≥ 0 and α > β > 0. Then there exists ε0 = ε0(A,α, β) such
that if ε < ε0 then ϕ(r) ≤ Crβ for all r ∈ [0, R0] for some C = C(A,B,R0, ϕ(R0), α, β).

Proof. For 0 < τ < 1 we have ϕ(τR) ≤ (ε + τα)ϕ(R) + BRβ. We assume without loss
of generality that 2A > 1, and take γ ∈ (β, α). Then we can choose τ ∈ (0, 1) such that
2Aτα = τβ. Choosing ε0 = τα, we have for ε < ε0

ϕ(τR) ≤ τγϕ(R) +BRβ.

Iterating this estimate gives

ϕ(τkR) ≤τγϕ(τk−1R) +Bτ (k−1)βRβ

≤τkγϕ(R) +BRβτ (k−1)β
k−1∑
j=0

τ j(γ−β)

≤τkβϕ(R) +BRβτ (k−1)β
∞∑
j=0

τ j(γ−β)

≤

τ−β + τ−2β
∞∑
j=0

τ j(γ−β)

 (ϕ(R0) +BRβ0 )τ
(k+1)β

≤C(A,B, α, β,R0, ϕ(R0))τ
(k+1)β

since |τ | < 1 and γ > β so the series is convergent and thus bounded, and we also used
the monotonicity of ϕ. Now for any r choose k ∈ N such that τk+1R ≤ r ≤ τkR then

ϕ(r) ≤ ϕ(τkR) ≤ Cτ (k+1)β ≤ Crβ,

by the monotonicity of ϕ and the fact that τk+1 ≤ r
R ≤ r.

34



The following gives very strong controls on the decay of −
∫
Br

|u|2 in terms of r, proved as
in [26, Prop. 5.7].

Proposition 3.8. Let u be a weak solution of ∇ · (A∇u) = 0 in BR(x0), where A is
a constant positive definite matrix with eigenvalues bounded between 0 < λ ≤ Λ. Then
there exists a constant C = C(λ,Λ) such that for all R > r > 0 and x0 ∈ Ω we have∫

Br(x0)
|u|2dx ≤ C

( r
R

)d ∫
BR(x0)

|u|2dx (3.6)

and ∫
Br(x0)

|u− ux0,r|2dx ≤ C
( r
R

)d+2
∫
BR(x0)

|u− ux0,R|2dx, (3.7)

where ux0,r := −
∫
Br
udx is the average of u on Br(x0).

Proof. For (3.6), we begin by noting that if ∇ · (A∇u) = 0 then uA(x) := u(A1/2x) is
harmonic3. Harmonic functions stay harmonic after an orthogonal change of basis so we
need only consider a diagonal matrix. For uD(x) := u(D1/2x) with diagonal matrix D,
the expression for ∆uD is precisely ∇ · (D∇u).

Since (·)2 is convex, |uA|2 is subharmonic, so mean value formulas give

−
∫
Br

|uA|2dx ≤ −
∫
BR

|uA|2dx,∫
Br

|uA|2dx ≤
( r
R

)d ∫
BR

|uA|2dx.

Applying the change of variables y = A1/2x and noting thatBλr ⊂ A1/2Br and A
1/2BR ⊂

BΛR gives ∫
Bλr

|u|2dx ≤
( r
R

)d ∫
BΛR

|u|2dx.

Now with r′ = λr and R′ = ΛR, this gives∫
B′

r

|u|2dx ≤ C

(
r′

R′

)d ∫
B′

R

|u|2dx

for the constant C =
(
Λ
λ

)d
. Here we are still under the condition r < R for our applica-

tion of the mean value formula, so we have proven the inequality in the case r′ ≤ λ
ΛR

′.
Alternatively, if we were to restrict ourselves to the case r ≥ aR for some a, we can take
C = a−d, since∫

Br

|u|2dx ≤
(
R

r

)d ( r
R

)d ∫
BR

|u|2dx ≤ C
( r
R

)n ∫
BR

|u|2dx.

3Here, A1/2 is the square root defined for positive matrices as A1/2 := PTD1/2P where A = PTDP
is the diagonalisation of A with P orthogonal and D diagonal with positive entries, and D1/2 is given
by taking the square root of each diagonal entry.
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So in fact for any r < R without restriction, we can take C =
(
Λ
λ

)d
.

For (3.7), we use the Poincaré-Wirtinger inequality (Theorem B.4) combined with the
first inequality, and then Caccioppoli’s inequality,∫

Br

|u− ux0,r|2dx ≤Cr2
∫
Br

|∇u|2dx

≤Cr2
( r
R

)d ∫
BR

|∇u|2dx

≤Cr2
( r
R

)d( 1

R

)2 ∫
B2R

|u− ux0,2R|2dx.

This gives us a global constant for the case r < R/2. Now for the cases r ≥ aR, noting
that t 7→

∫
Br

(u− t)2dx is minimised4 by taking t = ux0,r;∫
Br

|u− ux0,r|2dx ≤
∫
Br

|u− ux0,R|2dx

≤
∫
BR

|u− ux0,r|2dx ≤
( r
R

)d+2
(
1

a

)d+2 ∫
BR

|u− ux0,r|2dx.

So taking C = 2d+2 works for all pairs of radii with r ≥ R/2, and taking the max of the
two estimates gives the global bound as before.

Remark 3.9. Since the coefficients are constant and the equation is linear, if we knew
higher regularity of u we could differentiate the PDE to get any derivative of u satisfying∫

Br(x0)
|∇u|2dx ≤ C

( r
R

)d ∫
BR(x0)

|∇u|2dx,

and similar for the second inequality or with any higher-order derivatives we know to
exist.

Remark 3.10. In both inequalities, the difficulty was bounding the energies for arbi-
trarily small ratios of r/R, with the estimates for large values of r/R not using any of
the data from the PDE. So the important part of this result is that the local energy
of solutions to elliptic equations grows at most sublinearly as we increase the radius,
one cannot have local sharp spikes in the gradient without these affecting the global
behaviour.

Finally, we will need the following control in terms of the flux [26, Lemma 5.9].

Lemma 3.11. Let F ∈ L2(BR) and A be uniformly positive definite and bounded with
eigenvalues between 0 < λ < Λ. Then there exists a unique solution w ∈ H1

0 (BR) of
(3.1), and this solution satisfies

λ2
∫
BR

|∇w|2dx ≤
∫
BR

|F − Fx0,R|2dx ≤
∫
BR

|F |2dx,

4Simply expand the square and use linearity then optimise in t.
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where Fx0,R ∈ Rd is the componentwise averaged vector, s.t. (Fx0,R)i = −
∫
Fidx.

Proof. The existence and uniqueness are a result of minimising the strictly convex func-
tional w 7→

∫
(12A(x)|∇w|

2 − F · ∇φ)dx. For the bound, we test the weak formulation
against w giving∫

BR

A∇w · ∇wdx =

∫
BR

F · ∇wdx =

∫
BR

(F − Fx0,R) · ∇wdx,

where we smuggled in the additional term since w ∈ H1
0 (BR) so

∫
∇w · ydx = 0 for

each constant y ∈ Rd. Similar to the proof of Caccioppoli’s inequality, we use the lower
bound of the LHS integrand λ|∇w|2:

λ

∫
BR

|∇w|2dx ≤
∫
BR

(F − Fx0,R) · ∇wdx

≤
(∫

BR

|F − Fx0,R|2dx
) 1

2
(∫

BR

|∇w|2dx
) 1

2

λ2
∫
BR

|∇w|2dx ≤
∫
BR

|F − Fx0,R|2dx.

3.2.2 Hölder regularity

We can now establish the regularity of solutions to (3.1). We do this in three stages,
first for constant coefficients, then continuous coefficients, then a general statement for
Hölder continuous coefficients. These correspond to [14, Ch. 5] and [26, Ch. 5].

Theorem 3.12 (Regularity with constant coefficients). Let u solve (3.1) with A constant
and positive definite. If F ∈ L2,σ

0 (Ω) with σ < d+ 2. Then ∇u ∈ L2,σ
0,loc(Ω).

Proof. Take an arbitrary BR ⊂ Ω, and define ϕ(r) :=
∫
Br

|∇u− (∇u)x0,r|2dx. We want
a global C such that ϕ(r) ≤ Crσ. We begin by decomposing into homogeneous and
inhomogeneous parts u = w + v, where w and v are the unique solutions to{

∇ · (A∇w) = ∇ · F in BR

w = 0 on ∂BR,

{
∇ · (A∇v) = 0 in BR

v = u on ∂BR.
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Note that (∇u)x0,R = (∇v)x0,R since (∇w)x0,R = 0. We then estimate

ϕ(r) =

∫
Br

|∇u− (∇u)x0,r|2dx =

∫
Br

|∇v − (∇v)x0,r +∇w|2dx

≤ 2

∫
Br

|∇v − (∇v)x0,r|2dx+ 2

∫
Br

|∇w|2dx

≤C
( r
R

)d+2
∫
BR

|∇v − (∇v)x0,R|2dx+ 2

∫
BR

|∇w|2dx

=C
( r
R

)d+2
∫
BR

|∇u− (∇u)x0,R −∇w|2dx+ 2

∫
BR

|∇w|2dx

≤C
( r
R

)d+2
∫
BR

|∇u− (∇u)x0,R|2dx+ C

∫
BR

|∇w|2dx

≤C
( r
R

)d+2
ϕ(R) + C

∫
BR

|F − Fx0,R|2dx ≤ C
( r
R

)d+2
ϕ(R) + CRσ,

where we used Proposition 3.8 on the third line5, then Lemma 3.11 followed by F ∈
L2,σ
0 (Ω) on the final line.

Thus the conditions for a Campanato iteration (Lemma 3.7) apply, giving C with ϕ(r) ≤
Crσ, and hence an upper bound for the Campanato seminorm on an arbitrary ball of
radius R inside Ω. A covering argument gives ∇u ∈ L2,σ

0 (K) for each K ⋐ Ω.

Theorem 3.13 (Regularity with continuous coefficients). Let u solve (3.1) with A con-
tinuous, uniformly positive definite and bounded. If F ∈ L2,σ(Ω) for some σ < d then
∇u ∈ L2,σ

loc (Ω).

Proof. Fix a ball BR = BR(x0) ⊂ Ω, and decompose u = v+w, with w and v the unique
solutions to 

∇ · (A(x0)∇w) = ∇ ·
(
F + (A(x0)−A)∇u

)
in BR

w = 0 on ∂BR,

∇ · (A∇v) = 0 in BR

v = u on ∂BR.

(3.8)

Set G := (F + (A(x0)−A))∇u and ϕ(r) :=
∫
BR

|∇u|2dx, then as before

ϕ(r) ≤ 2

∫
Br

|∇v|2dx+ 2

∫
Br

|∇w|2dx

≤C
( r
R

)d ∫
BR

|∇v|2dx+ 2

∫
BR

|∇w|2dx

≤C
( r
R

)d ∫
BR

|∇u|2dx+ C

∫
BR

|∇w|2dx (3.9)

≤C
( r
R

)d
ϕ(R) + C

∫
BR

|G|2dx.

5Formally, we are using Remark 3.9 and the additional 1 step regularity we have from Theorem 3.5.
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The final term is bounded using∫
BR

|G|2dx ≤ 2

∫
BR

|F |2dx+ 2ω(R)2
∫
BR

|∇u|2dx

where ω(R) := supx,y∈BR
|A(x) − A(y)| is the modulus of continuity of A. Then since

F ∈ L2,σ,

ϕ(r) ≤ C
( r
R

)d
ϕ(R) + CRσ + Cεϕ(R).

Taking ω(R) suitably small for the ε in Lemma 3.7 gives ϕ(r) ≤ Crσ, hence ∇u ∈
L2,σ(BR), and the result once again follows from a covering argument.

Theorem 3.14 (Regularity with Hölder coefficients). Let u solve (3.1) with A uniformly
positive definite and bounded and A,F ∈ C0,α(Ω). Then ∇u ∈ C0,α

loc (Ω).

Proof. Fix BR ⊂ Ω, define ϕ(r) :=
∫
BR

|∇u− (∇u)x0,r|2dx and decompose u = v+w as
in (3.8). then the computations up to (3.9) give

ϕ(r) ≤ C
( r
R

)n+2
ϕ(R) + C

∫
BR

|∇w|2dx. (3.10)

The second term is bounded this time using the sharper estimate of Lemma 3.11, giving∫
BR

|∇w|2 ≤ 1

λ

∫
BR

|G−Gx0,R|2dx ≤ 1

λ

∫
BR

|G− Fx0,R|2dx.

≤C
∫
BR

|F − Fx0,R|2dx+ Cω(R)2
∫
BR

|∇u|2dx. (3.11)

Since A is α-Hölder continuous we have ω(R)2 ≤ CR2α. By Remark 2.7 we know

F ∈ C0,α ∼= L2,d+2α
0 ⊆ L2,d−ε

0
∼= L2,d−ε

for each ε > 0. Theorem 3.13 gives ∇u ∈ L2,d−ε
loc . These estimates combine to give

ω(R)2
∫
Br

|∇u|2 ≤ CR2α+d−ε.

Combining (3.10) and (3.11) gives

ϕ(r) ≤ C
( r
R

)d+2
ϕ(R) + CR2α+d + CR2α+d−ε.

Then a Campanato iteration (Lemma 3.7) gives6 ϕ(r) ≤ Cr2α+d−ε, which in turn gives

∇u ∈ L2,2α+d−ε
0,loc (Ω) ∼= C

0,α−ε/2
loc (Ω). In particular, since ∇u is continuous it is locally

L∞, so restricting to any Br ⋐ Ω,∫
Br

|∇u|2dx ≤ |B1|∥∇u∥L∞(Br)r
d,

6Here we can replace the term with 2α+ d with one with an ε if we make the constant large enough
as there is an upper bound on R.
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which gives ω(R2)
∫
Br

|∇u|2 ≤ CR2α+d. Finally, returning to (3.10) and (3.11) we
ascertain

ϕ(r) ≤ C
( r
R

)d+2
ϕ(R) + CR2α+d,

which gives the required regularity by another Campanato iteration.

Corollary 3.14.1. Let u solve (3.1) with A uniformly positive definite and bounded. If

we further have A,F ∈ Ck,α then u ∈ Ck+1,α
loc (Ω).

Proof. We proceed by induction, the case k = 0 is the above theorem. Assuming the re-
sult for k, Sobolev regularity Theorem 3.5 gives ∇u ∈ Hk

loc(Ω) and so we can differentiate
the equation. Denoting ∂

∂xi
= (·)′ and differentiating, we have

∇ · (A∇u′) = ∇ · (F ′ −A′∇u) =: ∇ ·G,

with G ∈ Ck,α since F,A ∈ Ck+1,α and ∇u ∈ Ck,αloc by the induction assumptions. Thus

u′ ∈ Ck+1,α
loc , giving u ∈ Ck+2,α as required.
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4 Regularity of optimal transport maps

In this chapter, we give an exposition of some of the recent work in optimal trans-
port regularity due to M. Goldman and F. Otto [16, 15], where one of the key tools is
Campanato’s theorem. In most of this chapter, constants and controls are global, not
depending on any data other than the dimension and sometimes a Hölder exponent. In
this case, we write ≲ for the existence of a global constant. An assumption of the form
f(x) ≪ g(x) with f, g ≥ 0 indicates that f(x) is much smaller than g(x), and there is a
small constant 0 < C < 1 such that f(x) ≤ Cg(x) uniformly. As in the previous chapter,
we will ignore differentials where the integration measure is clear to ease some notation.

4.1 Statement and sketch of the proof

The quadratic case c(x, y) = |x−y|2 is the most explored for optimal transport regularity,
due to its connections with the Monge-Ampère equation. We only discuss this case. For
transport between measures µ = fdx and ν = gdx, Brenier’s theorem gives the quadratic
optimiser of the form T = ∇u for some u convex, which combined with the Jacobian
equation (1) gives the Monge-Ampère equation

detD2u(x) =
f(x)

g(∇u(x))
.

There has been a wealth of study on Monge-Ampère, with the regularity theory being
studied extensively by Caffarelli in the 90s, as found in [10] as well as later contribu-
tions by De Philippis and Figalli [12, 22]. These regularity results are usually based on
forms of maximum principles which Monge-Ampère equations satisfy, as they are elliptic
equations in a certain non-linear sense, which we will not discuss.

Some simple examples show that in general, we cannot hope for a global regularity result,
indeed if we are transporting between a connected and unconnected domain, then every
transport map should be discontinuous somewhere. One can also construct examples of
connected domains where the map must have a discontinuity, considering some limiting
case which approaches disconnectedness - if the codomain consists of two large “islands”
with a very thin bridge between them. Caffarelli [9] proved that convexity of the target
domain was sufficient for numerous global regularity results.

Even in the case of a non-convex codomain, we might still hope for some partial regularity
result, and this is what we discuss in this chapter. In particular, we show there exist
open sets of full measure on which the optimal map is well behaved. In particular, this
chapter is devoted to proving the following theorem:
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Theorem 4.1. Let E and F be two bounded open subsets of Rd with |E| = |F | and let
T be a minimiser of quadratic cost Monge problem

min

{∫
E
|T − x|2 : T#χE = χF

}
, (4.1)

where by a slight abuse of notation T#χE denotes the push forward of the measure χEdx.
Then there exist open sets E′ ⊆ E and F ′ ⊆ F of full measure such that T is a C1,α

diffeomorphism between E′ and F ′.

This result had been originally attained by Figalli and Kim[13], but the proof we present
here is due to Goldman and Otto, as presented in [16, 15]. This result is a result of a
bootstrap in two stages. The first is a classical result due to Alexandrov [1].

Theorem 4.2 (Alexandrov Theorem). Let Ω ⊂ Rd and u : Ω → R be convex. Then u is
Lebesgue a.e. twice Fréchet differentiable, in the sense that for a.e. x0 ∈ Ω, there exists
a vector vx0 ∈ Rd and a matrix Hx0 ∈ Rd×d such that for all x,

u(x) = u(x0) + vx0 · (x− x0) +
1

2
(x− x0)

THx0(x− x0) + o(|x− x0|2).

Proof of this result is omitted but can be found in [4]. The immediate consequence of this
is clear for quadratic transport. Brenier’s theorem gives an optimal T as the gradient of
a convex function, so we have a.e. differentiability of T up to null sets. We focus on the
second part of the bootstrap, showing C1,α diffeomorphicity of T on an open set of full
measure, as is the focus of [16]. We sketch the proof below to motivate what is to come.

Sketch of the proof of Theorem 4.1.

It is most instructive to deconstruct the proof in reverse. First, since both χEdx and
χFdx are sufficiently regular measures, an inverse T−1 exists a.e by Remark 1.17, and
this is the optimal map from F to E. The differentiability given by Alexandrov’s theorem
precisely means that locally the distance of both T and T−1 from being an affine function1

on some ball vanishes as we shrink radius.

For almost all pairs x0 ∈ E, y0 = T (x0) ∈ F we will show that there exists an affine
change of coordinates so that the map has a fixed point T (0) = 0 (corresponding to the
former x0 and y0) and is still optimal. Thus it is sufficient to establish the regularity
in some neighbourhood of 0 under the assumption that BR ⊆ E ∩ F 2. The previous
condition of being close to an affine function at x0 now becomes one of being close to
the identity on B1. Explicitly, this will be quantified in terms of the energy

E(T,R) := 1

R2
−
∫
BR

|T (x)− x|2 + |T−1(x)− x|2dx. (4.2)

1In some sense to be defined. Think à la Campanato here, the sense in which we mean is not as
strong as Campanato a priori, but we will use this to establish Campanato.

2Here we use that the original sets were open to give some nbhd. of 0 for E,F after the change of
variables.
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Without the R2, this is the average displacement squared on BR of T and T−1. With
the R2 this becomes unitless, a local measure of how close T is to the identity. Due to
the affine invariance, we can assume R = 1 throughout most of the results. Thus we
focus on establishing regularity locally in B1 ⊆ E ∩ F by considering the Campanato
seminorm. We aim to establish C1,α regularity, which amounts to comparing T to affine
maps. To do this we construct a harmonic function φ whose gradient’s first order Taylor
series is a competitor to the Lagrangian displacement T − x, superlinearly in terms of
E(T, 1). Due to the various averaging factors in the energy (4.2), a superlinear control as
R vanishes corresponds to some σ > d+2 Campanato seminorm control on the integral,
which is precisely what we need for C1,α regularity by Campanato’s theorem.

The construction of φ is actually performed at the Eulerian level using the Benamou-
Brenier formulation

min

{∫ 1

0

∫
Rd

1

ρ
|j|2 : ∂tρ+ div j = 0, ρ( · , 0) = χE , ρ( · , 1) = χF

}
. (4.3)

We take the minimising pair (ρ, j) and define a harmonic function on B1 with Neumann
boundary condition ∇φ · n⃗ :=

∫ 1
0 j · n⃗ the average flux, where n⃗ is the outward normal

of ∂B1. We then pass this to the Lagrangian setting, making use of some interior L∞

controls on the transport in terms of the energy E .

We will show that, given a superlinear control of the distance T −x from ∇φ in terms of
E(T,R), up to a suitable change of coordinates E(T̂ , θ) ≤ θ2αE(T,R) is much smaller, for
any α ∈ (0, 1) and constant θ(α, d) < 1. This is quite similar to Lemma 3.7. Iterating
this procedure will allow us to control the Campanato seminorm locally around our fixed
point T (0) = 0, which gives the regularity.

Before beginning the detail, we first note (without proof) the following two lemmas
on estimates for harmonic functions as well as some controls of functions with mixed
Sobolev differentiability conditions. These correspond to [16, Lem. 3.1&3.2]:

Lemma 4.3. For f ∈ L2(∂B1), let φ be the solution of{
−∆φ = 0 in B1

∇φ · n⃗ = f on ∂B1,

with n⃗ here denoting the outward normal of ∂B1. Then∫
B1

|∇φ|2 ≲
∫
∂B1

f2, (4.4)

sup
B1/2

(|∇3φ|2 + |∇2φ|2 + |∇φ|2) ≲
∫
B1

|∇φ|2, (4.5)

and for the annulus Ar := B1 \B1−r we have for every r ≤ 1∫
Ar

|∇φ|2 ≲ r

∫
∂B1

f2. (4.6)
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Lemma 4.4. Let Ar := B1 \ B1−r for r ≤ 1. For any ψ ∈ L1(Ar × [0, 1]) which admit
weak derivatives satisfying the mixed integrability3 ∂tψ ∈ L1 and ∇φ ∈ L2 we have(∫ 1

0

∫
∂B1

(ψ − ψ)2
) 1

2

≲ r1/2
(∫ 1

0

∫
Ar

|∇ψ|2
) 1

2

+
1

r(d+1)/2

∫ 1

0

∫
Ar

∣∣∂tψ∣∣, (4.7)

where ψ(x) :=
∫ 1
0 ψ(x, t)dt.

4.2 Superlinear approximation by a harmonic gradient

In this section, we prove the two harmonic approximation results, first in the Eulerian
framework, then translating this into the Lagrangian setting.

4.2.1 Approximation of the Eulerian velocity

We need the following lemma [15, Lem. 2.4], which will control the excess flux on an
annulus.

Lemma 4.5. Let f ∈ L2(∂B1 × (0, 1)) be s.t. for a.e. x ∈ ∂B1,
∫ 1
0 f(x, t)dt = 0. Set

Ar := B1 \B1−r and define Q as all density-flux pairs (s, q) : Ar × [0, 1] → R× Rd with
|s| ≤ 1/2 and q L2 in spacetime, which weakly solve the continuity equation4

∂ts+ div q = 0 in Ar

q · n⃗ = f on ∂B1 × [0, 1]

q · n⃗ = 0 on ∂B1−r × [0, 1]

s(x, 0) = 0 s(x, 1) = 0,

Then provided that
(∫ 1

0

∫
∂B1

f2dSdt
)1/(d+1) ≪ r, we have

inf
(s,q)∈Q

∫ 1

0

∫
Ar

1

2
|q|2 ≲ r

∫ 1

0

∫
∂B1

f2.

Proof. We first show that the class Q is non-empty by giving an explicit construction.
Define u : Ar×[0, 1] → R as the mean free solution of the Poisson problem with Neumann
boundary conditions

−∆u = 1
|Ar|

∫
∂B1

f(x, t)dS(x) in Ar × (0, 1)

∇u · n⃗ = f on ∂B1 × (0, 1)

∇u · n⃗ = 0 on ∂B1−r × (0, 1).

3the class of all such functions is a Sobolev type space with norm given by summing these the L1 and
the L2 norms.

4In the sense that for ψ ∈ C1(Ār × [0, 1]), we have
∫ 1

0

∫
Ar
∂tψs+∇ψ · q =

∫ 1

0

∫
∂B1

fψ.
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We set q(x, t) := ∇u(x, t) and s(x, t) := −
∫ t
0 div q(x, z)dz so that s, q solve the continuity

equation in Ar×(0, 1) with the required boundary conditions. For
(∫ 1

0

∫
∂B1

f2
)1/(d+1) ≪

r we have |s| ≤ 1
2 , we need to check q is square summable. As the minimiser of some suit-

able energy, ∇ut ∈ L2(B1) for each fixed t. Multiplying the PDE by ut and integrating
by parts, we have for each fixed t 5.∫

B1

|∇ut|2 =
∫
∂B1

utft +

∫
B1

ctut := (I) + (II),

where ct =
∫
∂B1

ft. We claim we can control both (I) and (II) by ∥∇ut∥L2(B1)∥ft∥L2(∂B1),
then Young’s inequality would give∫

B1

|∇ut|2 ≲ ε

∫
B1

|∇ut|2 +
1

ϵ

∫
∂B1

f2t ,

So choosing ε suitably small to rearrange and integrating over t we would have finite
spacetime L2 norm. To control (I), with the trace inequality followed by Poincaré in-
equality (recall ut is mean free). we deduce

(I) ≤ ∥ut∥L2(∂B1)∥ft∥L2(∂B1) ≲ ∥ut∥H1(B1)∥ft∥L2(∂B1) ≲ ∥∇ut∥L2(B1)∥ft∥L2(∂B1).

For (II), again using mean free Poincaré, we have

(II) ≲ |ct|∥ut∥L2(B1) ≲ ∥ft∥L2(∂B1)∥∇ut∥L2(B1),

so that Q is non-empty. Turning towards the control, we use duality à la [3] to write
the continuity equation condition in its weak form as a sup, giving

inf
(s,q)∈Q

∫ 1

0

∫
Ar

1

2
|q|2

= inf
(s,q),|s|≤ 1

2

sup
ψ

{∫ 1

0

∫
Ar

1

2
|q|2 −

∫ 1

0

∫
Ar

s∂tψ + q · ∇ψ +

∫ 1

0

∫
∂B1

fψ

}
= sup

ψ
inf

(s,q),|s|≤ 1
2

{∫ 1

0

∫
Ar

1

2
|q|2 −

∫ 1

0

∫
Ar

s∂tψ + q · ∇ψ +

∫ 1

0

∫
∂B1

fψ

}

where the sup is over all square ψ in the mixed Sobolev space from Lemma 4.4, and we
interchange the order using Theorem B.36. We now optimise the integrand pointwise in
(s, q) à la [25, 3] using that |s| ≤ 1/2. This amounts to optimising

q 7→ 1

2
|q|2 − q · ∇ψ for all q; and s 7→ −s∂tψ for |s| ≤ 1

2
.

5Ignoring the factor of |Ar| which is not relevant to the finiteness of the norm.
6Whose application is justified by ψ = 0 combined with the above construction to show the class is

non-empty.
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which gives

inf
(s,q)∈Q

∫ 1

0

∫
Ar

1

2
|q|2 = sup

ψ

{
−
∫ 1

0

∫
Ar

1

2
(|∇ψ|2 + |∂tψ|) +

∫ 1

0

∫
∂B1

fψ

}
.

We now use that
∫ 1
0 fdt = 0 to introduce a ψ :=

∫ 1
0 ψdt term, giving

= sup
ψ

{
−
∫ 1

0

∫
Ar

1

2
(|∇ψ|2 + |∂tψ|) +

∫ 1

0

∫
∂B1

f(ψ − ψ)

}

≤ sup
ψ

{
−
∫ 1

0

∫
Ar

1

2
(|∇ψ|2 + |∂tψ|) +

(∫ 1

0

∫
∂B1

f2
)1/2(∫ 1

0

∫
∂B1

(ψ − ψ)2
)1/2

}
.

Setting F :=
(∫ 1

0

∫
∂B1

f2
)1/2

, using Lemma 4.4 where we denote the constant attained
by C > 0, followed by Young’s inequality gives

≤ sup
ψ

{
F

(∫ 1

0

∫
∂B1

(ψ − ψ)2
)1/2

− 1

2

∫ 1

0

∫
Ar

(|∇ψ|2 + |∂tψ|)

}

≤ sup
ψ

{
CFr1/2

(∫ 1

0

∫
∂Ar

|∇ψ|2
)1/2

+ C
F

r(d+1)/2

∫ 1

0

∫
Ar

|∂tψ| −
1

2

∫ 1

0

∫
Ar

(|∇ψ|2 + |∂tψ|)

}

≤ sup
ψ

{
1

2
CF 2r +

(
C

F

r(d+1)/2
− 1

2

)∫ 1

0

∫
Ar

|∂tψ|
}
.

Finally using the assumption F 2/(d+1) ≪ r (specifically, we need C F
r(d+1)/2 ≤ 1

2) gives

inf
(s,q)∈Q

∫ 1

0

∫
Ar

1

2
|q|2 ≲ F 2r = r

∫ 1

0

∫
∂B1

f2.

We can now prove the Eulerian approximation result, [16, Prop. 4.1].

Proposition 4.6. Let (ρ, j) be a minimiser to the Benamou-Brenier formulation (4.3),
and assume that B1 ⊂ E ∩ F . If the Eulerian energy

∫ 1
0

∫
B1

1
ρ |j|

2 ≪ 1 then there exists
φ : B1/2 → R harmonic in satisfying

∫ 1

0

∫
B1/2

1

ρ
|j − ρ∇φ|2 ≲

(∫ 1

0

∫
B1

1

ρ
|j|2
) d+2

d+1

(4.8)

and ∫
B1/2

|∇φ|2 ≲
∫ 1

0

∫
B1

1

ρ
|j|2.
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The proof is split into 5 parts as in [15, Prop. 3.3].
Step 1. We choose a radius R ∈ (1/2, 1) (depending on the pair ρ, j) such that the flux
through ∂BR is controlled in L2 (independently of ρ, j) by the overall Eulerian energy
inside B1.
Step 2. We define φ, explicitly as the harmonic function whose outward normal derivative
∇φ · n⃗ is precisely the average flux through ∂BR, making it a good candidate to compare
to the velocity dj

dρ .
Steps 3 and 4. We show the superlinear energy control (4.8) by first showing a quasi-
orthogonality property which separates the Eulerian energy from the Dirichlet energy
term. We then construct a competitor ρ̃, j̃ who has the harmonic flux inside a smaller
ball and only disagrees on an annulus, allowing us to only consider the energy difference
on this annulus, which is controlled by Lemma 4.5.
Step 5. We show the control on the Dirichlet energy.

Proof. [Step 1: Choice of Radius.] We begin by noting that by McCann’s displacement
convexity, Proposition 1.23 we have ρ ≤ 1 and hence∫ 1

1/2

∫
∂Br

∫ 1

0
|j(x, t)|2dtdSdr =

∫
B1\B1/2

∫ 1

0
|j(x, t)|2 ≤

∫ 1

0

∫
B1

1

ρ
|j|2.

We have for any f(x) that∫
B1\B1/2

f(x) =

∫ 1

1/2

∫
∂BR

f(x) ≥ 1

2
inf

R∈(1/2,1)
R a Leb. point of r→

∫
∂Br

f(x)

(∫
∂BR

f(x)

)
,

so that we can find R ∈ (1/2, 1) (depending of ρ, j but the control is uniform) satisfying∫
∂BR

∫ 1

0
|j|2 ≲

∫ 1

0

∫
B1

1

ρ
|j|2, (4.9)

and which is a Lebesgue point of r 7→ j ∈ L2(∂Br) in the sense that

lim
ε→0

∫ R+ε

R−ε

∫
∂B1

∫ 1

0
|j(rx, t)− j(Rx, t)|2dtdS(x)dr = 0.

We claim for this R, the continuity equation inside BR can be well understood with
boundary conditions, such that for all ϕ ∈ H1(BR × (0, 1)),∫ 1

0

∫
BR

ρ∂tϕ+ j · ∇ϕ =

∫ 1

0

∫
∂BR

ϕf +

∫
BR

ϕ(·, 1)− ϕ(·, 0), (4.10)

where f = j · n⃗ denotes the flux out through ∂BR. To prove this, we introduce the
cut-off function

ηε(x) :=


1 if |x| ≤ R− ε
R−|x|
ε if R− ε ≤ |x| ≤ R

0 otherwise,
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and by the weak formulation we have for any ϕ ∈ H1(BR × (0, 1))∫
Rd

(ϕ(·, 1)− ϕ(·, 0))ηε =
∫ 1

0

∫
Rd

∂t[ϕηε]ρ+∇[ϕηε] · j

=

∫ 1

0

∫
Rd

ηε(∂tϕ)ρ+ ηε∇ϕ · j − 1

ε

∫ 1

0

∫
BR\BR−ε

ϕj · n⃗.

Now taking ε→ 0 and using the Lebesgue point property we obtain (4.10).

[Step 2: Definition of φ.] We define φ : B1/2 ⊂ BR → R as a solution of{
−∆φ = 0 in BR

∇φ · n⃗ = f on ∂BR,
(4.11)

where f(x) =
∫ 1
0 f(x, t). Note that all solutions are the same up to an additive constant,

and we are only interested in the gradient ∇φ which is then unique. By construction,
this is a good time-independent candidate to compare to the velocity dj

dρ .

[Step 3: The quasi-orthogonality.] By suitably rescaling all of the data, we can assume
R = 1/2, and we do so to ease notation. In two steps, we now show the control (4.8).
First, we establish what Goldman and Otto refer to as a quasi-orthogonality property∫ 1

0

∫
B1/2

1

ρ
|j − ρ∇φ|2 ≤

∫ 1

0

∫
B1/2

1

ρ
|j|2 −

∫
B1/2

|∇φ|2. (4.12)

Here the left-hand side is still interpreted in the sense of (1.6), so that if ρ = 0 then j = 0
a.e. in t ∈ [0, 1] for the quantity to be finite and so also j − ρ∇φ = 0, and everything is
well defined. We compute∫ 1

0

∫
B1/2

1

ρ
|j − ρ∇φ|2

=

∫ 1

0

∫
B1/2

1

ρ
|j|2 − 2

∫ 1

0

∫
B1/2

j · ∇φ+

∫ 1

0

∫
B1/2

ρ|∇φ|2

=

∫ 1

0

∫
B1/2

1

ρ
|j|2 − 2

∫ 1

0

∫
B1/2

(1− ρ

2
)|∇φ|2 − 2

∫ 1

0

∫
B1/2

(j −∇φ) · ∇φ

≤
∫ 1

0

∫
B1/2

1

ρ
|j|2 −

∫ 1

0

∫
B1/2

|∇φ|2 − 2

∫ 1

0

∫
B1/2

(j −∇φ) · ∇φ,

where we used that ρ ≤ 1 by the displacement convexity Prop 1.23. Now using (4.10)
(recalling we took R = 1/2 for convenience) testing against φ and noting most terms
vanish as φ has no time component, we get∫

B1/2

j · ∇φ =

∫
∂B1/2

(
φ

∫ 1

0
f
)
=

∫
∂B1/2

φ∇φ · n⃗ =

∫
B1/2

|∇φ|2
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where the second equality is due to (4.11) tested against φ. Consequently,∫ 1

0

∫
B1/2

(j −∇φ) · ∇φ = 0,

and (4.12) is proven.

[Step 4: The main estimate.] We now establish

∫ 1

0

∫
B1/2

1

ρ
|j|2 −

∫
B1/2

|∇φ|2 ≲
(∫ 1

0

∫
B1

1

ρ
|j|2
) d+2

d+1

, (4.13)

which combined with (4.12) would give us (4.8). In order to show this, we construct
a competitor ρ̃, j̃ which agrees with ρ, j outside of B1/2 × (0, 1) and satisfies the upper
bound in (4.13). Then the minimality of ρ, j for the Benamou-Brenier problem gives the
result. Let r > 0 and we set Ar := B1/2 \B1/2(1−r). We choose

(ρ̃, j̃) :=

{
(1,∇φ) in B1/2(1−r) × (0, 1)

(1 + s,∇φ+ q) in Ar × (0, 1),

Where (s, q) ∈ Q is the minimiser from Lemma 4.5 with f replaced by f − f and
radius 1/2 rather than 1. By construction (ρ̃, j̃) is admissible for the Benamou-Brenier
formulation, as the flux out through ∂B1/2 is precisely the same as that of j for a.e. x
and t, so that the net flux through B1/2 is zero and this retains its constant density ≡ 1

at t = 0, 1 (since B1 ⊆ E ∩ F ), then setting (ρ̃, j̃) as equal to (ρ, j) outside of B1/2,
everything else is also preserved.

Now by Lemma 4.5 if
(∫ 1

0

∫
∂B1/2

(f − f)2
)1/d+1

≪ r (which is possible for some r ∈ (0, 1)

as the former is controlled by (4.9) and that
∫ 1
0

∫
B1

1
ρ |j|

2 ≪ 1) then we can choose
(s, q) ∈ Q such that ∫ 1

0

∫
Ar

|q|2 ≲ r

∫ 1

0

∫
∂B1/2

(f − f)2 (4.14)

Now using that |s| ≤ 1
2 we have∫ 1

0

∫
B1/2

1

ρ̃
|j̃|2 =

∫ 1

0

∫
B1/2(1−r)

|∇φ|2 +
∫ 1

0

∫
Ar

1

1 + s
|∇φ+ q|2

≤
∫ 1

0

∫
B1/2(1−r)

|∇φ|2 + 4

∫ 1

0

∫
Ar

|∇φ|2 + |q|2.

Then using this expression in the LHS of (4.13) gives∫ 1

0

∫
B1/2

1

ρ̃
|j̃|2 −

∫
B1/2

|∇φ|2 ≲
∫ 1

0

∫
Ar

|∇φ|2 + |q|2.

49



We now use the trace estimate (4.6) from Lemma 4.3 (here f plays the role of f) as well
as (4.14) to give∫ 1

0

∫
B1/2

1

ρ̃
|j̃|2 −

∫
B1/2

|∇φ|2 ≲ r

∫
∂B1/2

f
2
+ r

∫ 1

0

∫
∂B1/2

(f − f)2

= r

∫ 1

0

∫
∂B1/2

f2.

Note we cannot now pass any limit r → 0 giving a contradiction, as we need to maintain( ∫ 1
0

∫
∂B1/2

(f − f)2
)1/d+1 ≪ r. But we can choose r to be a large but linear multiple

of
( ∫ 1

0

∫
∂B1/2

(f − f)2
)1/d+1 ≤

( ∫ 1
0

∫
∂B1/2

f2
)1/d+1

corresponding to the requirement for

the lemma7. This gives

∫ 1

0

∫
B1/2

1

ρ̃
|j̃|2 −

∫
B1/2

|∇φ|2 ≲

(∫ 1

0

∫
∂B1/2

f2

)d+2/d+1

≲

(∫ 1

0

∫
B1

1

ρ
|j|2
) d+2

d+1

by (4.9), and combining with that ρ, j are a minimiser of the Benamou-Brenier formu-
lation and agree with ρ̃, j̃ away from the ball, we have∫ 1

0

∫
B1/2

1

ρ
|j|2 ≤

∫ 1

0

∫
B1/2

1

ρ̃
|j̃|2,

which in turn gives (4.13).

[Step 5: Control on the Dirichlet energy.]

Finally, we show the control on the energy of φ. We have∫
B1/2

|∇φ|2 ≤
∫
BR

|∇φ|2 ≲
∫
∂BR

|f |2 ≲
∫ 1

0

∫
B1

1

ρ
|j|2,

where we used the trace estimate in terms of the energy from Lemma 4.3 followed by
(4.9). This completes the proof.

4.2.2 Approximation of the Lagrangian displacement

We now pass to the Lagrangian framework. We will first need an L∞ interior control on
the transport displacement in terms of the energy (4.2). This is somewhat reminiscent
of interior L∞ estimates for harmonic functions as in Lemma 4.3. There the main tool is
the mean value theorem, whereas here the control is a consequence of the monotonicity
of any quadratic optimal map. Using the monotonicity for L∞ controls is established
global case in [5], here we prove a localised version as in [15, Lem. 3.1].

7Here we use
∫ 1

0

∫
B1

1
ρ
|j|2 suitably small to justify such an r existing.
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Lemma 4.7. Let T be the minimiser of (4.1) and assume E(T, 1) ≪ 1, then

sup
B3/4

|T −x| ≲
(∫

B1

|T − x|2
) 1

d+2

and sup
B3/4

|T−1−x| ≲
(∫

B1

|T−1 − x|2
) 1

d+2

, (4.15)

with the sup in the L∞ sense. Consequently for Tt(x) = tT (x) + (1− t)x, t ∈ [0, 1],

T−1(B1/16) ⊆ B1/8; Tt(B1/8) ⊆ B3/16 and T−1
t (B1/2) ⊆ B1. (4.16)

Proof. Let u(x) := T (x) − x denote the displacement. By monotonicity of T as the
quadratic optimiser, we have for a.e. x, y ∈ B1 that

(u(x)− u(y)) · (x− y) = (T (x)− T (y)) · (x− y)− (x− y) · (x− y) ≥ −|x− y|2. (4.17)

Let y ∈ B3/4 be s.t. the above holds for a.e. x ∈ B1. If we can show

u(y) ≲

(∫
B1/4(y)

|u(x)|2
) 1

d+2

,

we will have established the result. Since we show a bound independent of E and F ,
then by translating these it is sufficient to establish this just for y = 0. Furthermore, by
rotating E,F , we only need to show the bound for a single component of u. Thus it is
sufficient to prove

u1(0) ≲

(∫
B1/4

|u|2
) 1

d+2

.

Take y = 0 in (4.17), then for a.e. x ∈ B1/4, we have

u(0) · x ≤ u(x) · x+ |x|2 ≲ |u(x)|2 + |x|2

For r ≤ 1/8 we can integrate the above over Br(e1r) to obtain

2r2rd−1u(0) · e1 ≤
(∫

Br(re1)
|u|2
)
+ Crd+2

which in turn gives (still for r ≤ 1/8)

u1(0) ≲
1

rd+1

∫
B1/4

|u|2 + r =:
a

rd+1
+ r.

First-order optimisation in r on the RHS gives a minimiser

r′ = a
1

d+2 (d+ 1)
1

d+2 ,

Which is admissable under our assumption E(T, 1) ≪ 1 since a ≤ E(T, 1). Plugging in
this r gives

u1(0) ≲

(∫
B1/4

|T − x|2
) 1

d+2

,

51



giving half the estimate. For T−1 we can simply interchange the roles of E and F so
that we have (4.15).

For the ball containments, the first two follow immediately from (4.15), as if the L∞

displacement is very small, then no point can go far beyond the ball so the image is
contained in any ball slightly bigger than it if E(T, 1) is suitably small.

For the third containment T−1
t (B1/2) ⊆ B1, let x ∈ E such that Tt(x) ∈ B1/2. Then

since |Tt(0)| → 0 as E(T, 1) → 0 by the control above, we have

|Tt(0)− Tt(x)|2 ≤|Tt(0)|2 + 2|Tt(0)||Tt(x)|+ |Tt(x)|2

≤o(1) + 1/4

where o(1) → 0 as E(T, 1) → 0. On the other hand,

|Tt(0)− Tt(x)|2 =t2|T (x)− T (0)|2 + 2t(1− t)(T (x)− T (0)) · x+ (1− t)2|x|2

≥t2|T (x)− T (0)|2 + (1− t)2|x|2

≥1

2
min(|T (x)− T (0)|2, |x|2).

Combining the estimates, for E(T, 1) ≪ 1, we have either x or T (x) in B 1√
2
+o(1) ⊆ B3/4.

In the first case we are done, in the second by the L∞ control we have x = T−1(T (x)) ∈
T−1(B 1√

2
+o(1) ⊆ B3/4) ⊆ B1 which gives the final containment of 4.16.

Remark 4.8. The key part of the above is the ball containments, they will allow us to
control the Eulerian energy on a smaller ball by the Lagrangian energy on a larger one.
In general, the above controls give estimates of type T (Br) ⊆ T (Br+δ) for any δ > 0, if
we E(T, 1) ≪ 1.

These displacement controls now allow us to pass from the Eulerian framework to a
competitor to the displacement at the Lagrangian level, so that we can approximate the
displacement with a harmonic gradient superlinearly in terms of E(T, 1). This corre-
sponds to [16, Prop. 4.4].

Proposition 4.9. Let T be the minimiser of (4.1) and assume B1 ⊂ E ∩F . Then there
exists harmonic φ : B1/16 → R such that∫

B1/16

|T − x−∇φ|2 +
∫
B1/16

|T−1 − x+∇φ|2 ≲ E(T, 1)
d+2
d+1 (4.18)

and ∫
B1/16

|∇φ|2 ≲ E(T, 1).

Proof. Let Tt(x) = tT (x) + (1− t)x, and define the measures

ρ( · t) := Tt#χE
and j( · , t) := Tt#((T − Id)χE),
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which solve the Benamou-Brenier formulation (4.3). The velocity field v = dj
dρ satisfies

v(Tt(x), t) = T (x)− x for a.e. x ∈ E, so we have∫ 1

0

∫
B1/2

1

ρ
|j|2 =

∫ 1

0

∫
B1/2

|v|2dρ =

∫ 1

0

∫
T−1
t (B1/2)

|T − x|2 ≤
∫
B1

|T − x|2.

By Proposition 4.6 on B1/2, there exists φ : B1/4 → R harmonic such that∫ 1

0

∫
B1/4

1

ρ
|j − ρ∇φ|2 ≲ E(T, 1)

d+2
d+1 and

∫
B1/4

|∇φ|2 ≲ E(T, 1). (4.19)

To establish (4.18) we first show∫
B1/8

|(T − x)−∇φ|2 ≲ E(T, 1)
d+2
d+1 . (4.20)

By the triangle inequality, the inequality (a + b)2 ≤ 2a2 + 2b2, followed by integrating
both sides over t ∈ [0, 1],∫

B1/8

|(T − x)−∇φ|2 ≲
∫ 1

0

∫
B1/8

|(T − x)−∇φ ◦ Tt|2 +
∫ 1

0

∫
B1/8

|∇φ−∇φ ◦ Tt|2

:= (I) + (II).

We claim (I) ≲ E(T, 1)
d+2
d+1 and (II) ≲ E(T, 1)2 which would give (4.20) since E(T, 1)2 ≤

E(T, 1)
d+2
d+1 as soon as E(T, 1) ≤ 1.

For (I), recalling that v = dj
dρ satisfies v(Tt(x), t) = T (x)−x and again using the uniform

in t ball containments, we can rewrite the integrand as∫ 1

0

∫
B1/8

|v(Tt, t)−∇φ ◦ Tt|2 =
∫ 1

0

∫
Tt(B1/8)

|v −∇φ|2dρ

≤
∫ 1

0

∫
B1/4

1

ρ
|j − ρ∇φ|2 ≲ E(T, 1)

d+2
d+1 .

For (II), using ∇φ is Lipschitz with constant sup |D2φ| combined with Tt(B1/8) ⊂ B3/16,
we have

(II) ≤ sup
B3/16

|D2φ|
∫ 1

0

∫
B1/8

|Tt − x|2

≤
∫
B1/4

|D2φ|
∫
B1/8

|T − x|2 ≲ E(T, 1)2

where we used that |Tt − x| ≤ |T − x|, a general form of Lemma 4.3 that the L∞ norm
of harmonic functions on any interior ball is controlled by the Dirichlet energy and that
the energy itself is controlled by E(T, 1) from (4.19).
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Making use of the above, we now show the control for T−1 on B1/16 which would complete
the proof of (4.18). By The Triangle inequality and the L∞ ball controls,∫
B1/16

|(T−1 − x) +∇φ|2 =
∫
T−1(B1/16)

|(x− T ) +∇φ ◦ T |2

≤
∫
B1/8

|(T − x)−∇φ|2 +
∫
B1/8

|∇φ−∇φ ◦ T |2 ≲ E(T, 1)
d+2
d+1 ,

where the first term is precisely (4.20) and the second term is controlled as (II) above.

4.3 Partial regularity for the optimal map

4.3.1 Local C1,α behaviour: geometric control of E(T,R) in terms R

Here we establish the local regularity, as a consequence of what is referred to as an
epsilon regularity result, originally appearing to prove regularity for minimal surfaces.
Effectively what the result says is that if on some scale the map T is close to the identity
in the sense of E(T,R), then there exists a change of coordinates on a locally small scale
such that T is even closer to the identity. This corresponds to [16, Prop.4.5].

Proposition 4.10. Let T be the minimiser of (4.1). For every α ∈ (0, 1), there exists
0 < θ(d, α) < 1 and ε(d, α) > 0 such that for each R > 0 with BR ⊂ E∩F , if E(T,R) ≤ ε,
there exists a symmetric matrix Q with detQ = 1, and a vector b ∈ Rd satisfying

|Q− Id |2 ≲ E(T,R) and |y|2 ≲ R2E(T,R), (4.21)

such that map T̂ (x) := Q(T (Qx) − b) has a geometrically smaller energy on a scale θ
smaller;

E(T̂ , θR) ≤ θ2αE(T,R).

Note that Q and b depend on the specific map, but their controls in terms of the energy
are global.

Proof. If we can show the result for R = 1, for a general R we can re-scale E,F and
T to the R = 1 case, which would correspond to a change of variables x̃ = R−1x, a
redefinition T̃ (x̃) = R−1T (Rx̃) and b̃ = R−1b. Since this scaling preserves optimality
(by Brenier’s theorem and that the new map is simply the gradient of a suitably scaled
convex potential from the original), it is sufficient for us to prove only the case R = 1.

Let φ : B1/16 → R be the harmonic function given by the Lagrangian competitor Propo-

sition 4.9. We set b = ∇φ(0) and A = D2φ(0) the Hessian. Then we choose Q := e−A/2

as the exponential of the matrix, see appendix. Since A is symmetric and TrA = 0 as
φ is harmonic, then Q is symmetric and detQ = 1. By the harmonic function controls
Lemma 4.3, we have

|b|2 ≲
∫
B1/16

|∇φ|2 ≲ E(T, 1),
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and also

|Q− Id |2 = |
∞∑
i=0

(−1)i

2ii!
Ai − Id |2 ≤

∞∑
i=1

1

i!
|A|i ≲ |A| ≲ E(T, 1),

so that our matrix and vector satisfy (4.21).

Now turning towards our map T̂ (x) := Q(T (Qx)− b), for any θ > 0, if E(T, 1) ≪ θ2 ≪ 1
then |Q−Id | ≪ θ which meansQ(Bθ) ⊂ B2θ and also |Qy| = |Qy−y+y| ≤ |Q−Id ||y|+|y|
so that |Qy|2 ≲ |y|2. Consequently, we have

θ−2−
∫
Bθ

|T̂ − x|2 = θ−2

∫
Q(Bθ)

|Q(T − b)−Q−1x|2

= θ−2

∫
Q(Bθ)

|Q((T − b)−Q−2x)|2 ≲ θ−2−
∫
B2θ

|T − (Q−2x+ b)|2

Now applying the triangle inequality to the above,

θ−2−
∫
Bθ

|T̂ − x|2

≲ θ−2−
∫
B2θ

|(T − x)−∇φ|2 + θ−2−
∫
B2θ

|(Q−2 − Id−A)x|2 + θ−2−
∫
B2θ

|∇φ− b−Ax|2

:= (I) + (II) + (III).

We have (I) ≲ θ−(d+2)E(T, 1)
d+2
d+1 by Proposition 4.9. For (II) we have

θ−2−
∫
B2θ

|(Q−2 − Id−A)x|2 ≲ θ−(d+2)

∫
B2θ

|Q−2 − Id−A|2|2θ|2

≲ |Q−2 − Id−A|2 = |eA −A− Id |2 ≲ |D2φ(0)|4 ≲ E(T, 1)2.

Finally for (III) we have

θ−2−
∫
B2θ

|∇φ− b−Ax|2 ≤θ−2 sup
B2θ

|∇φ− b−Ax|2

=θ−2 sup
B2θ

|∇φ(x)− (∇φ(0)−D(∇φ)(0)x|2.

This is the error or the first order Taylor series of the vector field f = ∇φ, so by the
Lagrange form of the remainder this is equal to some second derivative of f inside B2θ.
This is a third-order derivative term D3φ, with a second-order power θ2 since we view
it at the Taylor series in f . Hence by Lemma 4.3,

−
∫
B2θ

|∇φ− b−Ax|2 ≲ θ−2 sup
B2θ

|D3φ||θ2|2 = θ2 sup
B2θ

|D3φ| ≲ θ2E(T, 1).

Combining the three estimates gives, for E(T, 1) ≪ 1 and θ < 1/2,

θ−2−
∫
Bθ

|T̂ − x|2 ≲ θ−(d+2)E(T, 1)
d+2
d+1 + E(T, 1)2 + θ2E(T, 1)

≲ θ−(d+2)E(T, 1)
d+2
d+1 + θ2E(T, 1).
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We now show a similar control for T̂−1(x) = Q−1T−1(Q−1x+ b). For E(T, 1) ≪ θ2 ≪ 1,

θ−2−
∫
Bθ

|T̂−1 − x|2 = θ−2−
∫
Q−1Bθ+b

|Q−1T−1 −Q(x− b)|2 ≲ θ−2−
∫
2θ
|T−1 −Q2(x− b)|2.

By repeated application of the triangle inequality, we have

|T−1 −Q2(x− b)| ≤|T−1 − (x−∇φ)|+ |x−∇φ−Q2(x− b)|
≤|T−1 − (x−∇φ)|+ |x−Q2x−Ax|+ |∇φ−Q2b−Ax|
≤|T−1 − (x−∇φ)|+ |x−Q2x−Ax|+ |∇φ−Ax− b|+ |b−Q2b|,

so that

θ−2−
∫
Bθ

|T̂−1 − x|2 ≲
(
θ−2

∫
B2θ

∣∣(T−1 − x) +∇φ)
∣∣2)+

∣∣ Id−Q2 −A
∣∣

+ θ−2 sup
B2θ

∣∣∇φ−Q2b−Ax
∣∣2 + θ−2

∣∣(Id−Q2)b
∣∣2

:= (I) + (II) + (III) + (IV ).

As before (I) ≲ θ−(d+2)E(T, 1)
d+2
d+1 and (III) ≲ θ2E(T, 1). For (II) we have∣∣ Id−Q2 −A

∣∣ = ∣∣e−A +A− Id
∣∣ ≲ ∣∣A2

∣∣2 ≤ ∣∣D2φ(0)
∣∣4 ≲ E(T, 1)2,

and for (IV),

θ−2
∣∣(Id−Q2)b

∣∣2 ≤ θ−2|D2φ(0)|2|∇φ(0)|2 ≲ θ−2E(T, 1)2.

Overall, this gives

θ−2−
∫
Bθ

|T̂−1 − x|2 ≲ θ−d+2E(T, 1)
d+2
d+1 + θ2E(T, 1).

Combining with the estimate for T , there exists a constant C(d) > 0 for which

E(T̂ , θ) = θ−2−
∫
Bθ

|T̂ − x|2 + |T̂−1 − x|2 ≤ C
(
θ−d+2E(T, 1)

d+2
d+1 + θ2E(T, 1)

)
for E(T, 1) ≪ θ2 ≪ 1. Note that our calculations show that C is independent of any
of the data, it is just that the controls only hold for when the data is suitably small.
Finally, we now fix θ < 1/2 such that Cθ2 ≤ 1

2θ
2α, which is possible since α < 1. Then

if E(T, 1) ≪ θ2 suitably, we have Cθ−(d+2)E(T, 1)
d+2
d+1 ≤ 1

2θ
2αE(T, 1) and in this case

E(T̂ , θ) ≤ 1

2
θ2αE(T, 1) + 1

2
θ2αE(T, 1) = θ2αE(T, 1).

In other words, what we have shown is that there exists 0 < θ(d, α) < 1 and a threshold
ε(d, α, θ) = ε(d, α) > 0 (corresponding to the requirement E(T, 1) ≪ θ2) such that if

E(T, 1) ≤ ε, then E(T̂ , θ) ≤ θ2αE(T, 1),

which is precisely what we were trying to show.
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We now prove the local regularity at a fixed point, [16, Prop. 4.6].

Proposition 4.11. Let T be the minimiser of (4.1), and assume that for some R > 0,
we have B2R ⊂ E ∩ F . Then if E(T, 2R) ≪ 1 we have T ∈ C1,α(BR) for any α ∈ (0, 1),
with the Hölder seminorm on BR controlled by

[T ]1,α ≲ R−αE(T, 2R)
1
2 .

Proof. We will show that T ∈ L2,2+2α
1 (BR), thus establishing the result by Campanato’s

theorem, Theorem 2.10. This means comparing T to degree 1 polynomials; affine func-
tions. If E(T, 2R) ≪ 1, then for any x0 ∈ BR,

E := R−2−
∫
BR(x0)

|T − x|2 + |T−1 − x|2 ≤ 2d+2E(T, 2R) ≪ 1.

We will show that for r ≤ R
2 (we only need to check this, c.f. (2.7))

min
A,b

1

r2
−
∫
Br(x0)

|T − (Ax+ b)|2 ≲ r2αE , (4.22)

which would establish the result by Campanato’s theorem. By translating E and F
and that the new optimal map is simply the affine translation, we can assume w.l.o.g.
that x0 = 0. We apply the previous result Proposition 4.10 to obtain a symmetric, unit
determinant matrix Q1 and a vector b1 such that T1(x) := Q1(T (Q1x)− b1) satisfies

E(T1, θR) ≤ θ2αE(T,R),

where θ < 1 is the constant given by the proposition. Given that T minimises the
transport between E and F , Brenier’s theorem gives that T1 minimises the transport
between the sets E1 := Q−1

1 E and F1 := Q1(F − b1), as T1 is the gradient of the same
convex potential as T under a suitable change of coordinates.

The conditions from the proposition that |Q1−Id | andR−1|b1| very small for E(T,R) ≪ 1
are now used, to deduce that

BθR ⊆ E1 ∩ F1.

We now iterate Proposition 4.10, giving a sequence of symmetric matrices Qn, vectors
bn and (optimal) maps Tn(x) = Qn(Tn(Qnx) − bn) between sets En := Q−1

n En−1 and
Fn := Qn(Fn−1 − bn), which satisfy

E(Tn, θnR) ≤ θ2αnE(T,R), (4.23)

|Qn − Id |2 ≲ θ2αnE(T,R) and |bn|2 ≲ θ2(α+1)nR2E(T,R)

To rigorously justify this iteration, we must note two things. The first is that the
threshold for the energy ε is independent of any of the data, this holds since θ < 1 so
that E(Tn, θnR) < E(T,R) and the original energy is below the threshold to reapply the
Proposition each time independently of n.
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The second thing we must justify is that each time the balls BθnR are indeed in En ∩Fn
for all n - that is, we do not need to make the original energy E(T,R) smaller once n gets
large to guarantee this, otherwise we could not iterate indefinitely. Note that the control
on |bn| means that it decays faster with n than θn does as the power of θ here is greater
than 1 - so if the initial energy E(T,R) is small enough, all the following translations
will be on a scale much smaller than scaling the radius by a factor of θ. The control on
|Qn| does not have a decay factor as strong as θn, but since this quantity is itself a scale
factor of an operator rather than the displacement |bn|, this is not necessary, and so long
as E(T,R) ≪ θ initially, each Qn will be much closer to the identity than the required
factor of θ. Thus we have BθnR ⊆ En ∩ Fn for all n without needing to tweak E(T,R)
so long as it starts small enough. This justifies being able to iterate the Proposition
indefinitely.

We now set

An := QnQn−1 . . . Q1 and dn :=

n∑
i=1

QnQn−1 . . . Qibi,

noting still that detAn = 1 and also that Tn(x) = AnT (A
∗
nx)− dn. We claim that

|An − Id |2 ≲ θ2αE(T,R). (4.24)

Proceeding inductively, if we had this control for n with some constant Cn > 0, then

|An+1 − Id | ≤|Qn+1An −An|+ |An − Id | ≤ |Qn+1 − Id ||An|+ |An − Id |
≤|Qn+1 − Id |(1 + Cn)E(T,R) + CnE(T,R)

≤
(
θ2α(n+1)(1 + Cn) + Cn

)
E(T,R),

so we would have the control for n+1 with Cn+1 = θ2α(n+1)(1+Cn)+Cn. In particular,
the term-to-term increase is geometrically vanishing to zero at rate θ, so that there exists
a control uniformly independent of n, giving (4.24). Specifically, this gives (for suitably
small initial energy E(T,R) ≪ 1) that B 1

2
θkR ⊆ A∗

k(BθkR). We then deduce that

min
A,b

1

(12θ
kR)2

−
∫
B 1

2 θkR

|T − (Ax+ b)|2 ≲ 1

(θkR)2
−
∫
A∗

k(BθkR
)
|T − (A−1

k (A∗
k)

−1x+A−1
k dk)|2

=
1

(θkR)2
−
∫
B

θkR

|T (A∗
kx)− (A−1

k x+A−1
k dk)|2

=
1

(θkR)2
−
∫
B

θkR

|A−1
k (Tk − x)|2

(4.24)

≲
1

(θkR)2
−
∫
B

θkR

|Tk − x|2

= E(Tk, θkR) ≲ θ2αkE(T,R).

where we used that T (A∗
kx) = A−1

k (Tk(x) + dk).
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This establishes that distance from a polynomial on concentric circles related by a geo-
metric factor of θ is uniformly controlled by the above power of θ times the energy on
the largest circle. However, for the Campanato seminorm, we must take the sup overall
r, it is certainly not sufficient only to control the decay of the energy along one specific
subsequence of radii θkR converging to zero, one can easily construct a candidate energy
for which this fails. We thus must control the energy uniformly on some annulus whose
radii are different by a geometric factor of at least θ. Iterating down along any of these
gives the control for all r. For any r ∈ [θR,R], we have8

E(T,R) = 1

Rn+2

Rn+2

rn+2|B1|

(∫
Br

. . .

)
≤ 1

θn+2

(∫
BR

. . .

)
=

1

θn+2
E(T,R).

The above combined with the decay control on geometric factor circles, gives (4.22), and
on account of Campanato’s theorem, the proof is complete.

4.3.2 T is a C1,α diffeomorphism on an open set of full measure

We now have all the tools we need to establish the partial regularity result. The previous
results have built up to giving local regularity in a neighbourhood of 0 when B1 ⊆ E∩F
when E ≪ 1 so that T is close to being the identity. We now make use of a change of
variables at a.e. point in E, which preserves optimality of the map and turns the new
map into having this fixed point. Then the differentiability of Alexandrov’s theorem
gives E → 0, establishing the regularity on an open neighbourhood of each point. This
is [16, Thrm. 4.7].

Theorem 4.12. Let E and F be two bounded open sets with |E| = |F |, and let T be the
minimiser of the quadratic transport (4.1). There exist open sets E′ ⊆ E and F ′ ⊆ F of
full measure such that T is a C1,α diffeomorphism between E′ and F ′ for any α ∈ (0, 1).

Proof. By Brenier’s theorem T is a.e. the gradient of a convex function, hence by
the Alexandrov theorem (Theorem 4.2) we have two sets of full measure E1 ⊆ E and
F1 ⊆ F such that T and T−1 are Fréchet differentiable (minus negligible sets), so that
for x0, y0 ∈ E1 × F1, there exit symmetric matrices A,B s.t. for a.e. (x, y) ∈ E × F ,

T (x) = T (x0)+A(x−x0)+o(|x−x0|) and T−1(y) = T−1(y0)+B(y−y0)+o(|y−y0|).
(4.25)

On account of Remark 1.17 we can assume that T and T−1 are inverses of one another
everywhere on E1 × F1. Then by the Jacobian equation (1), since both densities are
constant ≡ 1, we have detA = detB = 1, and we also have A = B−1. We now set
E′ = E1 ∩ T−1(F1) and F

′ = T (E′) = F1 ∩ T (E1). Since both measures are absolutely
continuous, T sends measure zero sets to measure zero sets so consequently E′ and F ′

are of full measure, that is |E \E′| = |F \F ′| = 0. We now prove the sets E′ and F ′ are
open and T is a C1,α diffeomorphism between them.

8This is reminiscent of the similar control we established for Proposition 3.8.
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Fix some x0 ∈ E′ and set y0 = T (x0) ∈ F ′. By the differentiability (4.25), we have

lim
R→0

1

R2
−
∫
BR(x0)

|T − y0 −A(x− x0)|2 +
1

R2
−
∫
BR(y0)

|T−1 − x0 −A−1(y− y0)|2 = 0. (4.26)

We make a change of variables on both domain and codomain x = A−1/2x̂ + x0 and
y = A1/2ŷ + y0, and define the new map

T̂ (x̂) := A1/2(T (A−1/2x̂+ x0)− y0) with inverse T̂−1(ŷ) = A1/2(T−1(A1/2ŷ + y0)− x0).

This map transports between the sets Ê := A1/2(E − x0) and F̂ := A−1/2(F − y0), and
by construction has a fixed point T (0) = 0. By Breiner’s theorem T = ∇u for some
convex u, then

T̂ (x̂) = A−1/2(∇u(A1/2x̂+ x0)− y0) = ∇̂
(
u(A1/2x̂+ x0)− y0 · x̂

)
,

where ∇̂ is the gradient in new coordinates, so T̂ is the gradient of a convex function
also (as convexity is preserved under affine changes of coordinates in the domain, and by
adding an affine function to the codomain). Noting that the Jacobians are | detA1/2| =
| detA1/2| = 1, this change of variables transforms (4.26) into

lim
R→0

1

R2
−
∫
BR

|A1/2(T̂ − x̂)|2 + 1

R2
−
∫
BR

|A−1/2(T̂−1 − ŷ)|2 = 0.

Using that A1/2, A−1/2 are invertible by their determinant and thus positive definite (not
just semi-definite) by convexity we have a smallest positive eigenvalue for each and by
bounding in terms of these we ascertain

lim
R→0

1

R2
−
∫
BR

|T̂ − x̂|2 + 1

R2
−
∫
BR

|T̂−1 − ŷ|2 = 0.

Now for small enough R, BR(x0) ⊆ E and BR(y0) ⊆ F such that BR ⊆ Ê ∩ F̂ . Thus we
invoke Proposition 4.11 to give both T̂ and T̂−1 as C1,α in a neighbourhood U of zero.
Returning to the original map, we have T is a C1,α diffeomorphism in a nbhd. U of x0
to T (U) a nbhd. of T (x0). We thus have U ×T (U) ⊆ E′ ×F ′, giving E′ and F ′ as open
sets and on account of Remark 1.17, T is a C1,α diffeomorphism between E′ and F ′.

Remark 4.13. As a consequence of the Evans-Krylov theorem, letting T = ∇u for
u convex by Brenier’s theorem, we have u as C2,α and hence a classical solution to
the Monge-Ampère equation detD2u = χE′ so that we actually get T ∈ C∞ on E′.
Unfortunately, we do not have room to discuss this here.
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A Notation

χA indicator of set A
|A| Lebesgue measure of a set
T#µ push forward measure T#µ(A) := µ(T−1(A))
P(X) probability measures on X, probability measures on X
P2(X) probability measures with finite second moments
Md(Rd) Rd valued vector measures
Π(µ, ν) prob. measures γ ∈ P(X × Y ) with marginals Px#γ = µ, Py#γ = ν
W2(µ, ν) the 2-Wasserstein distance
l.s.c./ u.s.c lower/upper semi-continuous
≪ Numbers: sublinearly much smaller than. Measures: absolutely continuous

with respect to
≲ globally controlled by (constant depending only on d/ Hölder exponent)
dµ
dν for measures with µ≪ ν, the Radon-Nikodym derivative
−
∫

average integral, 1
|A|
∫
A

Cc continuous with compact support
Cb continuous and bounded
Ck,α k times differentiable functions which kth order derivatives α-Hölder
Hk;W p,k Sobolev spaces of k times weak differentiable functions with 2 or p-

summable derivatives
Pk polynomials of degree k or less
⋐ compactly contained
∇ gradient in the space variables, not including any time variables
A∗ for a square matrix A, the adjoint/transpose
o(f(x)) standard little “o” notation - something which decays to zero when divided

by f(x).
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B Appendix

Definition B.1. A collection of probability measures Q ⊂ P(X) are called tight if for
each ε > 0 there exits a compact Kε ⋐ X such that µ(X \Kε) < ε for all µ ∈ Q, so that
up to an arbitrarily small amount of mass, the support of all the measures lie inside the
same compact set.

Theorem B.2 (Prokhorov’s Theorem). Let (X, d) be a Polish space, then a collection
of measures is tight if and only if they are relatively compact w.r.t. the narrow topology.

We use an infinite dimensional saddle problem result from [7].

Theorem B.3 (min-max). Let X,Y be topological vector spaces over R and let A ⊂ X
and B ⊂ Y be closed convex sets. Let F : A × B → R be a functional that is convex
and l.s.c. in the first variable, and concave and u.s.c. in the second. Suppose that there
exists y ∈ B and λ ∈ R such that {x ∈ A;F (x, y) ≤ λ} is non-empty and compact. Then
we can allow the inf − sup exchange

sup
y∈B

inf
x∈A

F (x, y) = inf
x∈A

sup
y∈B

F (x, y).

Theorem B.4 (Poincaré-Wirtinger inequality). Let Ω ⊂ Rn be a bounded domain with
DiamΩ < l. There exists a constant C(n, p) > 0 such that for u ∈ W 1,p(Ω) and
uΩ = −

∫
Ω u, ∫

Ω
|u− uΩ|pdx ≤ Clp

∫
Ω
|Du|pdx.

Definition B.5. For a square matrix A, the matrix exponential is defined as

eA :=

∞∑
n=0

1

n!
An

Some properties we use:

• If A is symmetric, then eA is also symmetric.

• If TrA = 0 then det eA = 1

• If A is invertible, (eA)k = ekA for any k ∈ Z.

Lemma B.6. The function det(·)
1
d : Rd×d → R is concave.

62



Bibliography

[1] AD Alexandrov. The existence almost everywhere of the second differential of a
convex function and some associated properties of convex surfaces. Ucenye Zapiski
Leningrad. Gos. Univ. Ser. Math, 37(6):3–35, 1939.

[2] Luigi Ambrosio, Alberto Bressan, Dirk Helbing, Axel Klar, Enrique Zuazua, Luigi
Ambrosio, and Nicola Gigli. A user’s guide to optimal transport. Modelling and
Optimisation of Flows on Networks: Cetraro, Italy 2009, Editors: Benedetto Piccoli,
Michel Rascle, pages 1–155, 2013.

[3] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solu-
tion to the monge-kantorovich mass transfer problem. Numerische Mathematik,
84(3):375–393, 2000.

[4] Gabriele Bianchi, Andrea Colesanti, and Carlo Pucci. On the second differentiability
of convex surfaces. Geometriae Dedicata, 60:39–48, 1996.
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[10] Luis A Caffarelli and Xavier Cabré. Fully nonlinear elliptic equations, volume 43.
American Mathematical Soc., 1995.

[11] Sergio Campanato. Proprieta di una famiglia di spazi funzionali. Annali della Scuola
Normale Superiore di Pisa-Scienze Fisiche e Matematiche, 18(1):137–160, 1964.

[12] Guido De Philippis and Alessio Figalli. The monge–ampère equation and its link to
optimal transportation. Bulletin of the American Mathematical Society, 51(4):527–
580, 2014.

63



[13] Alessio Figalli and Young-Heon Kim. Partial regularity of brenier solutionsof the
monge-ampère equation. Discrete and Continuous Dynamical Systems, 28(2):559–
565, 2010.

[14] Mariano Giaquinta and Luca Martinazzi. An introduction to the regularity theory for
elliptic systems, harmonic maps and minimal graphs. Springer Science & Business
Media, 2013.

[15] Michael Goldman and F Otto. A variational proof of partial regularity for optimal
transportation maps. In Annales Scientifiques de l’École Normale Supérieure, 2019.
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