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Introduction

History of optimal transportation theory

The story of optimal transport begins in France with mathematician Gaspard Monge, a
few years before the revolution of 1789. Monge was a prominent figure in French society:
He served on the committee involved in establishing the metric system, was involved in
the founding of the Ecole Polytechnique, and was a friend and aide of Napoleon[§]. Our
interest with Monge, however, lies in his 1781 paper [21] submitted to the Académie
des sciences, titled “Mémoire sur la théorie des déblais et des remblais”. The paper
discusses the problem of moving piles of earth to another location/arrangement in the
most economical way.

Specifically, the Monge problem (in its modern form in the language of measure theory,
which was yet to be developed) is as follows. Given two probability measures p,v €
P(RY), representing a distribution of mass, one considers maps 7' : RY — R? that
“push” the mass distribution of p onto that of v meaning

w(T7YA) =v(A) for each measurable A C R,

written Tz pu = v. This is saying that the mass arriving at each A is precisely the amount
that was sent there under T'. We wish to choose such a T" minimising the transport cost

[ @) = slano).
Rd

which represents an average of the Euclidean distances particles have moved. In the case
that u and v are absolutely continuous, one can imagine these mass distributions as piles
of sand given by the graphs of the densities, and we wish to move one pile to the other
in the most cost-efficient way. If u and v have densities f and g and T is differentiable,
then this condition is equivalent to the Jacobian equation

9(T(x)) det DT (z) = f(x). (1)

This problem has some clear generalisations - we need not be in a Euclidean space,
and we might also hope to understand a more general cost function. For spaces X
and Y between which we are transporting p € P(X),v € P(Y), and a cost density
c(z,y) : X x Y — R, Monge’s problem generalises to

(MP) min{ /X c(a, T(x))du(z) T#u:u}.
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In general, this problem can be ill-posed in multiple ways: uniqueness can fail, sometimes
a minimiser does not exist, and sometimes there is no transport map at all, as we
demonstrate in the following canonical example.

Example 0.1 (No transport exists). Let u = dp € P(R) be a Dirac mass, and consider
the target measure v = %5_1 + %51; two Dirac masses. Then no transport map can
exist as the image measure T under any map T will be a single Dirac dp). The
philosophical limitation here is that the Monge problem does not allow “splitting” of
mass - we cannot break up the Dirac and send half of the mass to each of the atoms of
v.

Fast forward to 1942 in the Soviet Union. Mathematician and economist Leonid Kan-
torovich proposes a similar problem in [I8], discussing applications “location of consump-
tion stations with respect to production station” for the optimal planning of railways,
and “levelling a land area” in which Kantorovich states a similar motivation to that of
Monge.

Kantorovich’s idea is that instead of maps, one considers “transport plans” represented
by measures v € P(X x Y'). Here v(A x B) represents the amount of mass transported
from the set A C X to B C Y. One views B — v({z} x B) as describing the image
distribution of the mass starting at = (the crucial point being that this disintegration
measure need not be a Dirac mass, so we can “split” the mass at x across the posterior
space). Then the restrictions on the prior and posterior mass distributions become
conditions on the marginals of v: we want that for each measurable A C X and BCY

n(A) =7v(AxY) and v»(B)=~7(X x B);

so that the total mass leaving X is distributed according to p and the total mass which
arrives in Y is distributed according to v. Simple calculations show this is equivalentﬂ
to asking my4y = p andmyxy = v. We write II(p,v) for all such measures. We observe
that this is never empty, as one has at least the product measure p X v; so unlike in
Example there is always a transport plan (in this case the product measure is the
only transport plan, and crucially this splits the mass at 0 in p, which (MP) does not
allow). This leads to Kantorovich’s problem

(KP) min{/XXyC(w,y)d'y(w,y) : ’YGH(%V)}

There are multiple reasons why (KP) is more tractable - first the linearity of the problem,
and second that the constraint is closed under weak convergence. We will explore these
in detail in Chapter 1.

'"Here, 7., 7, are the projections from X x Y onto the respective coordinates.



Structure of the report

e In Chapter 1, we discuss the core theory regarding the Monge and Kantorovich
problems. Focusing on the more tractable (KP) first, we prove a general existence
result, characterise optimal plans for an arbitrary continuous cost function, and
formulate and prove the equivalence of a dual problem. We then consider (MP)
and its relations to (KP), proving a general equivalence between the minimisation
costs for suitably regular source measure pu, existence and uniqueness of an optimal
map for the case c¢(x,y) = h(y — x) for h strictly convex, and discuss the quadratic
case h(z) = |z|> and some of its niceties. Finally we look at the Benamou-Brenier
formulation of optimal transport, which recasts the problem in the language of
continuum mechanics.

e In Chapter 2, we consider some function spaces due to S. Campanato and C.
Morrey, which we show, for certain parameters, are isomorphic to Holder spaces.
Campanato spaces consist of functions that can locally be approximated by degree
k polynomials suitably strongly in L? norm at each point. We show that for
certain parameters this guarantees k derivatives, with the kth order ones Holder
continuous. These results will aid us in establishing regularity for optimal transport
maps and elliptic PDE in the following chapters.

e In Chapter 3, we step away from optimal transport to discuss the regularity of weak
solutions to a certain class of linear elliptic PDE. We discuss when solutions lie
in both Sobolev and Hoélder spaces, depending on the coefficients of the equation.
The former is established using a difference quotient which we uniformly bound
in L? norm, from which functional analysis tools give a convergent subsequence
whose limit we show is a weak derivative. The Holder regularity is established
obliquely, showing that the solutions lie in Campanato and Morrey spaces.

e In Chapter 4, we present the recent work of Goldman and Otto [16l [I5], a partial
regularity O result for optimal transport maps between uniform measures. This
is established using the Benamou-Brenier formulation to construct a harmonic
function who’s gradient approximates the transport displacement of the optimal
map 7' in the Lagrangian setting. We then prove a so called “epsilon regularity”
result which allows us to iterate approximating T" better with harmonic gradients.
This is sufficiently fast that the first order Taylor series of the harmonic gradient is
a sufficient competitor to show the map lies in a certain Campanato space, which
gives the Holder regularity.



1 Lagrangian and Eulerian formulations
of optimal transport

This chapter covers the core results regarding the Monge and Kantorovich problems in-
troduced in the introduction, as well as considering a third framework from the Eulerian
viewpoint due to Benamou and Brenier.

1.1 The Kantorovich problem

1.1.1 Existence

We begin by stating a general existence theorem for (KP) defined in the introduction,
following the references [25, Ch. 1] and [2, Ch. 1]. We start by stating explicitly what
we mean by weak convergence.

Definition 1.1. We say a sequence p, € P(X) converges narrowly to p if p, — p
weakly in duality with Cy(X), so that [y ¢dpn — [y ¢dp for all ¢ € Cy(X). Narrow
convergence is, in general, non-metrisable, but it is a relatively powerful notion: if p, —
i then pn(A) — u(A) for any Borel set A C X.

To show the existence of a minimiser we use the Prokhorov theorem which gives the
equivalence of tight and compact sets of measures w.r.t the narrow topology (see ap-
pendix Theorem . Once we have the compactness, the proof follows by standard
variational arguments.

Theorem 1.2. Let X and Y be Polish spaces, with y € P(X) and v € P(Y) and
c: X xY =R be l.s.c. and bounded from below. Then (KP) admits a solution.
Proof. [Step 1: II(u,v) is compact w.r.t the narrow topology .J

We first show II(u, v) is tight. Fix € > 0 and note that since singletons are compact and
hence tight, the converse of Prokhorov gives the existence of Kx € X and Ky € Y with
WX\ Kx)<e/2and v(Y \ Ky) < /2. Then for any « € II(u,v) we have

A(X XY\ (Ex < Ky)) < 7(X\EKx)xY)+1(Xx (Y\Ky)) = p(X\Kx)+v(V\Ky) < .

Thus we have that II(u, v) is tight with Ky x Ky compact sufficing for the ¢ challenge.
Prokhorov then gives relative compactness. For the full compactness, consider consider
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a convergent sequence vy, € II(u,v) with 7, — 7. Then taking ¢ € Cp(X X Y) as
¢ = Xxaxy for any measurable A gives

p(A) = / XAxy dyn — Xaxydy = mpuv(A),
XxXY XxXY

and since the LHS is constant v has X marginal u, and a symmetrical argument works
on Y so that v € II(p, v) and II(u, v) is narrowly compact.
[Step 2: K(v) = [ cdy is lower semi-continuous w.r.t the narrow topology.]

Take 7, — -, then as cis l.s.c. and bounded below, there exists a sequence of continuous
functions ¢; monotone increasing from below to cﬂ By definition of narrow convergence
[ erdyn — [ epdy for each k, so that

liminf/c(x,y)dfyn > liminf/ck(:z:,y)dyn = /ck(x,y)d%

by monotonicity. Then monotone convergence in k gives the result.

[Step 3: A minimiser for (KP) exists.] This follows from standard arguments from
the calculus of variations. Take a minimising sequence, pass to a subsequence by the
compactness of II(u, v), then the limit measure is a minimiser by lower semi-continuity.

O

1.1.2 Characterisation of optimal plans for a continuous cost

In this section, we seek to understand (KP) in the case of continuous cost, mostly
following references [2, [25].

Definition 1.3. For a function ¢ : X — R U {xoo}, we define the c-transform of ¢ by
P°:Y 2R 9%(y) = nf c(z,y) —o(z).
and similarly the c-transform of a function v : Y — RU {£oo} by

P X 5 R ¢(x) = ylg; c(z,y) — ¥(y).

We say a function is c-concave if it is the ¢ or € transform of some function.

Definition 1.4. For a c-concave function ¢ : X — R U {—o0}, we define the c-
superdifferential of @ by pairs x,y satisfying.

0% = A{(z,y) € X XY : p(x) + () = c(z,y)}
For f: X — R ls.c. one can take fi(x) = inf, f(y) + kd(z, ).




Remark 1.5. We define c-concavity in terms of an inf, and this means one can easily
verify that for any c-concave function, ¢ = . For the case c(x,y) = —(x,y), the c-
transform becomes the (negated) Legendre transform for concave functions. We usually
define concave functions by some interpolation inequality rather than as an inf of affine
functions, so establishing that the double Legendre transform of any concave function
returns to itself is not so trivial.

Definition 1.6. For a cost c: X XY = R, a setI' C X XY 1is said to be c-cyclically
monotone (c-CM) if for any collection of points (x1,y1),...(Tn,yn) C T, and any per-
mutation o : {1,....,n} — {1,...,n}, we have

n n

Z c(ari, yz-) < Z c(x, ya(i))'

i=1 i=1

By relabeling points, one can replace the need for o(i) with simply i +1 € Z/n.

As in [2]; consider =Y~ 16, and v = Y 15, as unweighted sums of Dirac masses in a
Fuclidean space, with the same number of atoms in each. It is clear that having ¢-CM
support is a necessary and sufficient condition for an optimal plan; this simply says that
there is no way we can swap where mass is sent to reduce the overall cost.

If the cost is continuous, this can be seen to also be necessary for general non-atomic
measures, despite the above only being a condition on countable collections of points.
Any neighbourhood of any point in the support of some plan v has some mass transported
through it, and by continuity, if Spt~ was not ¢-CM we would find some regions of
positive mass on which for some permutation, the sum of costs was strictly larger.
We could then construct a competitor with lower transport cost by permuting where
these regions of mass are sent. We formalise this in the below theorems as found in
[2, 25], showing that this criterion completely characterises optimisers of (KP) when ¢
is continuous.

Theorem 1.7. Let v € II(u,v) be optimal for (KP) with cost ¢ be continuous. Then
Spt v is c-cyclically monotone.

Proof. Assume v has support not c-cyclically monotone, call this I' := Spty. Then there
exist pairs of points (z1,41),...(Zn,yn) C I' such that

n n

Y el@iyivn) < Y elwiyi).

i=1 i=1
By continuity, we can find neighbourhoods x; € U;, y; € V; such that

n n

ZC(Ui,UZ‘+1) — Zc(ui,vi) <0 for all u;,v; € Uy, V.

i=1 =1



We now modify 7 to create a new plan 4 = v+ m with lower transport cost. To maintain
7 € II(p,v), we require that m is a signed measure with zero X and Y marginals and
v > m~ so that ¥ is a positive measure. Since z;,y; € I' we have y(U; x V;) > 0 for
each 7, so that we can define the measures v; = m’7|Uix\/“ with marginals p; and

v;. Then for each i, we can build a measure 7; € II(u;, vi41), and define m by

k
min; v(U; x V; -
K i=1
Then 4 = v + m is admissible and has a lower transport cost than 7, so 7 is not
optimal. 0

The following is another characterisation of optimal plans, found in [2), 25].

Theorem 1.8. Suppose that ¢ is continuous, bounded below, assume there exists f €
LY(p) and g € L' (v) such that

c(x,y) < f(z)+g(y). (1.1)

Suppose that ' C X XY is a c-cyclically monotone set, then there exists a c-concave
function ¢ : X — RU{—o00} (which is not constantly —oo) such that max(p,0) € L'(u)
and I' C 0%p.

Proof. Omitted. The details can be found in the above references. O

1.1.3 The dual formulation

Since (KP) is a linear minimisation with linear constraints, it admits a natural dual
problem, given by maximising some functional with linear constraints. We give two
proofs: the first is more derivative a la [25], using Theoremfor an infinite-dimensional
inf-sup exchange. The idea is to turn the constraint on the marginals into a sup, then
attempt to justify exchanging inf and sup due to convexity and concavity in the different
variables (here it is just linearity). The second instead uses the cyclical-monotonicity as
in [2].

Theorem 1.9 (Duality). Let ¢ : X x Y — R be continuous and bounded below, and
satisfying . Consider the problems

(KP) min{/Xxyc(a:,y)d’y : ’yEH(,u,y)}

and

o) swp{ [ et [ var ple) + o) < o}, (1.2)

R

where the sup is over ¢ € L'(u) and v € L'(v). We have sup (DP) = min (KP), and
the mazimum of (DP) is attained.



Proof using saddle point theory. With this in mind relaxing to allow any v € P(X xY),
the constraint can be expressed as

B _Jo v € (p,v)
i‘?i/ﬁd’”/y‘”d” /)(Xy(w(x)w(y))dv— {+Oo if not,

where here we sup over p € L'(u) and ¢ € L'(v). By adding the constraint to (KP),
the problem becomes

inf d d dv — d~.
in iﬁ/ch 7+/X<p u+/yw v /Xxy(w(ﬂf)ﬂ/}(y)) v

Since the expression is linear in all of 7, p, ¥, we want to interchange inf and sup, and we
justify this by Theorem as taking ¢, 1 = 0, we know II(u, ) is narrowly compact
and values of the transport cost are bounded over this set by (1.1)). Thus the problem
becomes

sup /X o+ /Y v — inf /X el) = pla) + vl

o v

Here the inner inf has value 0 if p(z) +¢(y) < ¢(x,y) and —oo otherwise, as we inf over
all positive measures. Thus we can write this inf instead as a constraint, giving the dual
formulation

op) sup{ [t [var ple) + o) < o)}

o,

Now as in [2] we show duality another way, also establishing that the sup is a max.

Proof using c-cyclical monotonicity. For sup(DP) < inf(KP), take any admissible ¢, 1, .

We have
/(pdu—‘r/wdﬂ:/ cp—l—wd’yg/ cdry.
X Y XY XXY

Passing a sup and inf on either side gives the required inequality.

For sup(DP) > inf(KP), take an optimal 7, then by Theorem we have a pair of
potentials with max(¢,0) € L*(u) and max(¢ 0) € L'(v) for which Spt+y lies in the
c-supergradient. Thus

/ cdvz/ w+<pcd7=/<pdu+<pcd%
XxY XxXY

so that ¢ € L*(u) and ¢¢ € L'(v) and the duality is proven. O

Remark 1.10. Solutions to the dual problem are referred to as Kantorovich potentials.
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1.2 The Monge problem

We now turn towards the historical predecessor, Monge’s formulation. Some natural
questions which we will answer are:

e What is the relation between transport maps and transport plans?

e Are the values of the minimisation problems the same?

e When does an optimal map exist? When is it unique?

1.2.1 Equivalence of the minimisation cost for y atomless

We first want to understand the relationship to (KP). Let T': X — Y be a transport
map between p and v. Then we can define a measure v € P(X x Y) by

Yr ‘= (Id XT)#,U,.
It is easily verified that for any AC X and BCY
(A xY)=p(A); (X x B)=v(B)

so that yp € II(u,v). We also note that Spty C {(z,T(x)) : z € X}. Turning to the
respective costs of (MP) and (KP) we have

| ctwman= [ et Tnan = [ e T)an

XxY XxY X

where we first used the support concentration to replace y with T'(x), and then that the
integrand only depended on x to replace the integration with the X marginal. Thus the

transport costs are the same, so we see that this plan encapsulates the behaviour of map
T.

An immediate corollary of this is also that min(KP) < inf (MP), as the plan-induced
maps are a subset of II(u,v).

Proposition 1.11. Let u,v € P(RY) and assume that p is atomless. Then there exists
at least one transport map Typ = v.

Proof. Omitted, a simple construction can be found as Lemma 1.28/Corollary 1.29 in
[25]. O

Our example from the introduction demonstrated that in some cases, no optimal maps
exist. One might ask that if at least one map exists, can we find a minimiser? The
answer, in general, is no. However, we do have a strong result on the approximation of
plans by maps, as found in [25, Thrm. 1.32]. We first need the following lemma.

9



Lemma 1.12. Let X be a compact metric space and p € P(X). Let E, = {E;}icr, be
a sequence of finite partitions of X with the diameter of the largest element

|Ey| == max Diam(E; ) — 0 as n — oo.
(2

Let p, € P(X) be such that they give the same mass to each element of each partition
E,, that is, for each n and i, pn(E;in) = p(Ein). Then p, — p narrowly.

Proof. We set m; p, := pn(Ejin) = p(E;ip). For any ¢ € C(X) we have

‘ [ oo [ oap /| oo - o

<>
iel

< Y w(Diam(E; n))mip < |En| = 0,
ic€ly,

where w is the modulus of continuity of ¢. The control on the 2rd line is simply that
the quantity above could be largest when p and p,, both assign all their mass on E;,, to
points whose values are as far apart as the modulus of continuity allows. O

Theorem 1.13. Let Q C R? be compact and p,v € P(Q) with u atomless. The set of
map-induced plans yr is dense in I(u,v) w.r.t the narrow topology.

Proof. Take an arbitrary v € II(u, v), we will construct a sequence of maps 7,, for which
’)/Tn - /-Y'

Fix n, we partition 2 into a finite number of sets K, of a diameter smaller than
i, for example suitably small cubes. We set E;;, = K;, X Kj,, which form a
partition of 2 x 2, with max diameter less than % On account of Lemma we
must construct a transport map 7}, for which 7, gives the same mass to each E; ;.
We set Col;,, := K; ,, x {2 and let v; , be the restriction of  to this, this is the measure
which describes where the mass starting in K, ends up in 2. We denote the marginals
of this measure as f; , and v; 5, and by Proposition define T; ,, as a transport map
between these marginals. Now each p;,, are concentrated on different sets of a partition,
they each describe where a certain part of the original mass goes. Thus ), yt; , = p and
> i Vin = v, and we can define a map T;, = ), T; , which transports p to v.

By construction, vz, gives the same mass as v to each Ej; ., so v, — v by Lemma
12 O

Corollary 1.13.1. For p atomless and ¢ continuous, inf (MP) = min (KP).

1.2.2 Existence of optimal maps for strictly convex cost

The results in the previous section do not tell us when there exists an optimiser to (MP),
or equivalently when the optimal plan of (KP) is induced by a map. In this section, we

10



answer this question in the case X =Y = Q c R? for Q compact, and cost function
c(x,y) = h(x — y) with h strictly convex, as found in [25] 2, Sect. 1.3]. We first need
the following, motivated by [27].

Proposition 1.14. For c¢(z,y) = h(x — y) with h strictly convez, c-concave functions

are locally Lipschitz and hence differentiable a.e.

Proof. We sketch the main ideas, details are found in [27, Lem. 2]. Since convex
functions on R¢ are locally Lipschitz, then on a compact domain they are Lipschitz.
In light of [25, Box.1.8] the c-transform of a function inherits the modulus of continuity
of the cost, so any c-concave functions are Lipschitz. The differentiability follows from
Rademacher’s Theorem. O

The following is presented as in [25, Thrm. 1.17].

Theorem 1.15. Let i, v € P(Q) for some compact Q C R, with pu absolutely continuous
and () = 0. Let c(x,y) = h(x—1y) for h strictly convez, bounded below and satisfying
. Then the optimal plan for (KP) is unique and induced by a map, and taking a
Kantorovich potential @, we have an explicit form for the map

T(z) = 2 — (Vh) " (Ve(a)).

Proof. We prove this using duality. Let v be an optimal plan for (KP), we aim to show
that for y-a.e zg,yo € Spt~y, g uniquely specifies yg so that we can define a map p-a.e.
By Theorem there exist Kantorovich potentials ¢, ¢ such that

() + ¢°(y) < h(z —y) on @ x Q and ¢(x) + ¢“(y) = h(x —y) on Spty.

Since p is absolutely continuous, then ¢ is differentiable p-a.e. and consequently for
v-a.e. Tg, Yo € Spty we have by first-order optimisation of the c-transform inf that

x +— h(x — yo) — p(z) is minimised at z = x,
so by differentiability given by the previous proposition, for y-a.e xg, yo
Vxh(l’o - y()) = V(p(:l)o). (13)

Our assumption of strict convexity on A means that VA is strictly monotone in each
coordinate and hence invertibleEl7 so that (noting also that the boundary points are
negligible by assumption)

Yo = o — (Vh) " H(V(xg)) for y-a.e. xg,90 € X x Y.

2Potentially with the need to view it as a multi-valued subgradient if A is not C*, but in any case
this multi-valued map is still invertible.

11



Since the boundary and non-differentiability points are pu negligible, we can define u-a.e.
amapT: X — Y by
T(z) =z — (Vh) " V().

Observe that ([1.3)) uniquely specifies the gradient of any Kantorovich potential, and
hence the map T is uniquely specified up to negligible sets. Consequently, we also have
uniqueness of the optimal ~y. O

Remark 1.16. We need the strict convexity here, as [25, Ex. 2.16] demonstrates. For
example with the classic Monge cost c¢(z,y) = |xr — y|, considering one dimensional
transport on R between uniform densities ;1 = X[g 9] and v = x[1 3], both the maps

x+2 ze€]|0,1
T(x)=z+1; S(x) = 0,1]
x xz € (1,2].
are optimal as they have the same transport cost and 7' is the monotone map which is
always optimal in 1D for convex (not needing strictly) costs, see [25, Thrm. 2.9].

Remark 1.17. We note that if both p and v possess the regularity stated in the theorem
then there exists a unique map optimising the transport from v to p also, and this must
also be induced by the same transport plan, so that the two maps must be a.e. inverses
of one another.

There is an extremely powerful characterisation of this in the quadratic case due to Y.
Brenier [6]. We show this as a result of the following Lemma from [25, Prop. 1.21].

Lemma 1.18. Let ¢ : R? — RU {—0c0}, and define u, : R — R U {oo} by uy(z) =

@ — (). Then uye = (uy)* where * denotes the Legendre transform. Thus a function

@ is c-concave if and only if @ — () is convezr and l.s.c.

Proof. We simply compute

x|

o () = up £ %|x —yl’ +ely) = sup <<f”’y> - (!y; N SO(y))) '

_ P

Ugpe () 5

Since the double c-transform of a c-concave function is itself, we thus have that the
double Legendre transform of u,, is itself, which characterises convexity. O

Theorem 1.19 (Brenier’s Theorem). Let ¢(z,y) = i|z—y[?, p € P(R?), andu : R — R
convex (hence a.e. differentiable by Alexandrov theorem, Theorem . Then the map
T = Vu : R* - R? is optimal for transport between p and Tupt.

Proof. We prove only the case for u absolutely continuous and only prove that the opti-
mal map is the gradient of a convex function (not that any convex gradient is necessarily
optimal) the general case can be seen as a consequence of c-cyclical monotonicity for
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the cost ¢(z,y) = —(z,y) and its relation to the subgradient of a convex function due to
Rockafellar[23].

For p a.c. the above theorem applies since the cost is strictly convex, and hence there
exists an optimal map between p and T, which is of the form

1) =2 - Veo(a) = ¥ (2 - o)

where ¢ is a Kantorovich potential. The above lemma applies so that T is a.e. the
gradient of a convex function. O

Remark 1.20. The above say that one can talk of optimal maps without reference to a
target measure for quadratic cost. Gradients of convex functions are monotone in every
variable, so most efficiently move mass around as no mass crosses over each other.

1.3 The Eulerian formulation: Benamou-Brenier

The Monge and Kantorovich frameworks are somewhat limited in describing continuous
transportation of mass, in the sense that they only consider the start and end point
t =0 and t = 1, and not the evolution of the mass distribution for all ¢ € [0, 1], specified
by some family of measures p; with pg = p and p; = v. In this section, we consider a
formulation due to JD. Benamou and Y. Brenier, originally presented in [3].

An important consequence of our existence theorem for (KP) (Theorem is that we
can always assign a transport cost between two measures. We focus only on the case
X =Y = R% and ¢(x,y) = |z — y|?, but it is easy to see that the following can be
generalised to ¢(x,y) = |z — y[P for arbitrary p > 1. For any u,v € P(Q2), we define the
Wasserstein distance

1
2
Walp) = min{ [ o=y et}
R4 xR4

To guarantee that this is finite, we actually restrict to the subspace P2(R%), which
consists of all those u € P(R?) with finite second moments [ |z|2dp < oc.

This satisfies the symmetry and positivity properties to justify calling this a distance
(if 4 = v then there is a coupling concentrated along the diagonal which thus has
zero transport cost). The triangle inequality is a little more involved, but can be seen
to follow from a disintegration argument found in [25, Lem. 5.5]. We note that this
distance behaves extremely differently to, for example, taking the L? difference of two
probability densities. The W5 distance captures a horizontal transport movement, while
the aforementioned measures a vertical overlap.

We aim to understand the most efficient way to continuously deform one mass distribu-
tion into another, and this amounts to finding a geodesic in Py(R%) (w.r.t the Wasser-
stein distance) between our measures p and v. Continuous deformations are naturally

13



described by continuity equations. We will say a family of measures p; € P(RY) and R?
valued vector measure fluxes j; € M¥(R?) for ¢ € [0, 1] solve the continuity equation

Op+V-j=0, (1.4)

if they are a distributional solution in the sense that for all ¢ € C}(R¢ x (0,1))

1 1
/ 8t¢dptdt + / / V(b . djtdt = 0.
0 JRE 0 JR

The following theorem we present similarly to the original paper [3, Prop. 1.1}, noting
that the result can be significantly generalised to a very broad statement equating abso-
lutely continuous curves in Py (in the Wy metric derivative sense) with solutions to the
continuity equation, as found in [25, Thrm. 5.14].

Theorem 1.21 (Benamou-Brenier). Let p,v € P2(R?), be compactly supported mea-

sures. We have
1
2 _ . L .9
Wa(p,v)” = inf —iF i po=p, pr=vy, (1.5)
0 JRrd P

where the inf is taken over all pairs of time-indexed measures p; and fluzes j; satisfying
with distributional boundary conditions pg = p and p1 = v, and we define the

quantity

dj |2 .
1 =41°d if 1 <K
L= G5 °dpif L (16)
P 400 otherwise.

Proof. We give a formal proof a la [3], making some additional regularity assumptions
along the way. A rigorous approach by convolution deals with the general case in [25],
Ch.5]. Take any pair of time-indexed measures p; and fluxes j; that satisfy with
boundary conditions pg = i and p; = v, and for which the RHS of is finite. The
finiteness demands that for a.e. ¢t we can define v = g—z. We write the flow instead in
Lagrangian coordinatesEL setting

X(x,0) =z, OX(z,t):=v(X(x,t),t).

Then for all test functions ¢ € C1(R? x (0,1)) we have

/Rd /01¢(a:,t)dptdt — /Rd /01 S(X (2, 4), £)dpodt,

and specifically X (-, 1) : R? — R? is a transport map between p and v as a consequence
of the boundary conditions. Consequently,

1 1
/0 /Rd lv(z,t)|*dp,dt :/0 /Rd lv(X (,t),t)|*dpodt (1.7)
1
:/ / 3tX(937t)|2dtdp02/ |X (2,1) — X (z,0)|?dpo
R4 JO

R4

3Here we assume that v is suitably regular to justify this calculation.
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where the second line follows from Jensen’s inequality. The RHS is the Monge cost
for X(-,1) and hence is greater than or equal to Wa(u,v)2. To show the infimum is
attained, let 7" minimise the Monge formulation and set Ty(x) = tT(z) + (1 — t)z as
a constant speed interpolation of the mass between = and T'(x) for each point. Then
pr = (Ty)pp and jy = T,#[(T — Id),u]lﬂ solve the Benamou-Brenier formulation, with
velocity vy = g—ﬁ; = T(z) — x for each t € [0,1]. Thus returning to , the Benamou-
Brenier cost of this interpolation is

1 1
/0 /R ]vt\zdptdt—/o /R T() — 22dpodt = Wa(p, 1)’

as T minimises the Monge cost, which gives the result. O

Remark 1.22. These interpolations with 7, only are admissible as R? is convex, on a
more general space this may fail. One can easily construct some counter-examples for
which no geodesic exists when the domain is an open non-convex set.

In applications, one considers functionals on P2(2), and instead of desiring convexity
in the sense of linear interpolations, they wish for convexity along geodesicsﬂ - which in
this case are continuity equation mass flows minimising . This theory was initially
developed by McCann in his thesis [20], here we present a simple version between uniform
measures as found in [16], the paper which will be the subject of Chapter 4.

Proposition 1.23 (McCann’s displacement convexity). Let E, F' C R? be two bounded
sets of equal measure and T minimise the Monge problem between xgpdx and xpdx. Set
Ti(z) = (1 —t)T(z) + tx, and set py = (Ty) g and jy = Ti#[(T — Id)p] as a minimising
pair of the Benamou-Brenier formulation. Then py < 1 for all t € [0,1].

Proof. We assume that p and j are absolutely continuous for all ¢, proof of this can be
found in [29, Prop. 5.9]. Thus the Jacobian equation for each t reads

p(t, Ti(x)) det DTy (x) = xg(z),
which holds for a.e. z. For ¢t = 1 in particular, det DT'(xz) = xg so that

(det DTy(z))a = (det(1 — ¢)Id +#T(z))d < (1 — t)(detId)a + t(det DT(z))d = 1

by concavity of det(-)l/ 4 on non negative symmetric matricies, see Appendix. Thus

pr <1 for all t. O

“Here this is the push forward of the vector measure (T — Id)u, given simply by the push forward in
each component.

In Euclidean spaces there is no distinction here, geodesics are precisely interpolations. But here
interpolations are geodesics for the L? distance between densities rather than the Wy distance.
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2 Morrey, Campanato and Holder spaces

2.1 Definitions, Morrey = Campanato

In this chapter, we study some function spaces for which certain energy-type semi-norms
are finite. We then establish that these spaces are embedded inside the Holder spaces for
certain parameters. These results will be extremely useful for establishing the regularity
of solutions to Elliptic PDE and optimal transport maps in the following chapters.

We set Q(xg,7) := QN By(xp) as the r “ball” inside . Throughout the rest of this
Chapter, we assume 2 C R™ to be a connected bounded domain with the following
regularity property: There exists a constant Cg > 0 such that for all g € Q and
r < Diam 2 we have

|Q(wo,7)| = Car’. (2.1)
Equivalently, one could say
(o, 7)|
T > C(Q) >0,
| By (o))

so the proportion of any ball that lies in the domain is uniformly bounded away from
zero. Intuitively what this says it that each Q(xg,r) must uniformly have enough of its
area inside €2, so that we cannot have any sharp “cusps”. For example this fails if the
boundary of some 2 C R? contains

T@ =37 e<o.

with the domain lying above this curve - then taking a sequence of points inside the
domain approaching z1,2o2 = 0 and some fixed radius the proportion of a ball inside
vanishes. This condition will be important as the seminorms defined below relate an
energy on £(xg,r) to the growth of 77, so making the domain have too sharp a cusp
somewhere could cause the seminorm to blow up not because the energy is too small, but
the region we are integrating over is. One can show (laboriously) that every Lipschitz
or C'!' domain has this property.

{\/E x>0

We denote by & the space of polynomials in d variables of degree k or less, that is,
functions of the form

P(z) = Z gz’ 2P = a2 ..x’gd

for multi-indices 5. We will denote by g! the multi-factorial 81!8s!... B4!.
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Definition 2.1. The Hélder space C**(Q) for 0 < o < 1 consists of all u € C*(Q) with
finite Hélder seminorm

[u]k o := sup ]Dﬁu(w) —Dﬂu(y)]
yO T
18l=k |z —yl|*
T#Y

Remark 2.2. We have C5* = 22, if o > 1. Indeed let o = 1 + ¢ with € > 0. Then for
any multi-index 8 with |3| = k,

|Du(z) — Du(y)|

<l|z -yl
|z —yl

The Hélder condition directly gives continuity and the above equation gives any direc-
tional derivative of D%u vanishing everywhere for each |3| = k by taking the limit = — .
Thus u € Z;..

Definition 2.3. For1 < q¢ < oo and o > 0, we define the Morrey space L9?(Q2) as those
u € LY(Q) for which have finite Morrey seminorm:

1
1 q
(u)go = sup / lu(z)|%dx | < oo.
zoe \ 77 Q(zo,r)

r>0

Before defining the Campanato space, we need the following projection result of L? onto
Py, as proved in [11].

Lemma 2.4. Fizu € LI(Q(zg,7)) for 1 < g < oo, g € Q and r > 0. The minimisation
problem

min { / () — P(z)|"de; P e %} (2.2)
Q(x0,7)

admits a solution, and it is unique.

Proof. We write a general element of &, as P(x) = > <y, %’?(aj — 20)?. Thus we can
view the coefficients {ag} as lying together in some Euclidian space R™, and the quantity

FiRT =R f({ag}) = llu = Pl e

depends continuously on these parameters. As a consequence of Lemma proved in

the next section, if we take a sequence of polynomials P; € &7, such that (Z‘ B<k a? ﬂ) 2

00, then ”Pi”%q(g(zo,r)) — 00, which in turn gives f({a; g}) — oo by the reverse triangle
inequality. Thus we have the existence of at least one minimiser since the problem is
a coercive, continuous minimisation problem in a Euclidean space. Uniqueness follows
from the uniform convexity of L? spaces. O
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Definition 2.5. For 1 < ¢ < oo,0 > 0 and k € N, we define the Campanato space
LL7(Q) by all those u € LI(QY) which have finite Campanato seminorm:

1 ) / ?
ul|k,q,0 := sup | — min u(z) — P(x)|9dx | < oo.
g = sup ( pin [t P )

r>0

Remark 2.6. In the case k£ = 0 the degree k polynomials are just constants, and for
g = 2 the minimiser of the infimum is given by wu, , := JCQ(xo r) Us 8O that the Campanato

seminorm becomes
1 2
[ullo2x = sup | — |u — ugy r|“da
zo€Q \ " JQ(xo,r)

r>0

N

Remark 2.7. Since we are always assuming our domain is bounded, for either space
L%7 or EZ’O then we can fix any p > 0 and consider the sup over only p > r > 0 by
an open covering argument, due to the relative compactness of the domain. So really,
these conditions are local properties. As a consequence of this, fixing p = 1, for two
parameters o < s, we see that £7° C L7, L9 C L9 and C* C Cko.

Remark 2.8. Membership of L% is saying that the L7 energy ¢z, (r) = |, B, |ul?dz grows
in a “o-Holder” sense at each point with ¢4, (r) < Cr?, and this growth is uniform in
space so C' can be taken independent of xy. Membership of L’Z’U means that the gth power
of the LY distance of u from locally being a degree k polynomial satisfies this Holder type
growth condition instead. Unlike in Remark we do not have the restriction o < 1
for an interesting space, as the same argument is only enough to show that qﬁ;O(O) =0
(the point being that ¢ denotes a different function at each point unlike before).

Theorem 2.9. If 0 < o < d and ) satisfies then L*7(Q) 2 L37(Q).

Proof. For reasons of space, we only prove the direction L??(Q) C ES’U(Q). For the
converse direction, see [I4, Prop. 5.4]. We have

/ \u—umﬁdxs?/ 2z + 1920, 7)o 2 ) |
Q(zo,r) Q(zo,r)

and Jensen’s inequality gives

1

—_— lu|?dz.
’Q(x(), T)‘ Q(zo,m)

|U9:o,7“|2 <

This gives ||ullo20 < 23(u)a, as required. O
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2.2 Campanato’s theorem

This section is devoted to proving the following regularity theorem due to Sergio Cam-
panato, originally shown in [II, Th. 5.III]. Although we only need the case k = 0 for
elliptic PDE as we can differentiate the equation, the general case will be the crux of
the proof of partial regularity for optimal transport maps.

Theorem 2.10 (Campanato’s Theorem). Let Q0 satisfy with o > d + kq. Then
Cha(Q) = LL7(Q) for o = # and there exist global constants depending only on
k,q,0,d, Q) giving the equivalence of the respective seminorms.

Remark 2.11. As a consequence of Remark if further we have o > d + (k + 1)q,
then £]7(Q2) = 2. If a function can be approximated by a degree k polynomial this
closely, it must in fact be one.

Remark 2.12. The domain regularity property is crucial for a uniform Ho6lder
seminorm in x. As previously mentioned, the Campanato seminorm condition says that
the distance from a degree k polynomial on Q(zg,r) vanishes faster than r?, but this
could be for two reasons: how well behaved w is, or if the Lebesgue measure of Q(xg,r)
vanishes very quickly. Property gives a uniform control on this, saying a certain
proportion of any such set must be in the domain. With  open not satisfying this, we
still get u € C'IIZCO‘ (©2) however, by applying the result on an open ball around each point.

The direction C*(2) C £37(€) is relatively intuitive. We might hope that k times dif-
ferentiable functions are closely approximated by degree k polynomials, and the natural
tool to do this - the degree k Taylor series at each x( - turns out to be a good enough
candidate to establish this (although it is not necessarily the minimiser of on each
Q(zp,7)).

The converse is considerably more delicate, and we will need several preparatory results
to establish this. On account of Remark the statement £37(Q2) C CH(Q) tells us
that if o is suitably large then the distance locally of w from being a degree k polynomial
at each x( grows so slowly with r that « must have k continuous derivatives - that if there
was any discontinuity of a Du at some xg € €, then here no element of 27, is locally
close enough. To give some intuition, we first sketch the structure of this direction of
the proof below.

[Sketch of the converse direction.] We follow Campanato’s original proof as presented
n [I1]. From now on, fix 1 < ¢ < 0o, k € Zxo and u € LL?(Q). For each z¢ €  and
r > 0 denote the unique minimiser (c.f. Lemma

P(x,20,7) := argmin { / lu(x) — P(x)%dz; P e %} . (2.3)
Q(zo,r)

One should view this as a polynomial in z, with x¢ and r fixed.
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[Step 1.] We begin by proving that at each xy € 2, the value at z( of the minimiser on
Q(xp,r) converges as r — 0, as do all of its derivatives of degree k or less. That is, for
each multi-index || < k,

ag(zo,r) = Dﬂp(l', 20, 7) | g=x0 (2.4)

has a limit as » — 0. To establish this we first prove some general estimates on the value
of derivatives | D? P(x)| of degree k polynomials in terms of their L? norms on Q(xg,r).
We apply these estimates to the sequence of polynomials

Py(z) = D?f [P(QS,SC07T‘2_h) — P(x,a:o,TQ_h_l)]

to show the sequence DPP(x,xq,727")|y=s, is Cauchy, further deducing its limit is
independent of the initial choice of r. For each (3, we call this limit

vg(zo) == }1_1}(1) ag(xo, ). (2.5)

[Step 2.] Next, we establish the Holder continuity of each vg when |3| = k, and their
differentiability relationship between their derivatives when || < k — 1. Specifically, we
show that for each orthonormal basis vector e;,

Ovg
8:@

() = Vgye,(x);  fori=1,2,...,d.

This is established via an inductive argument backwards from the case |3| = k. The
crucial point is establishing also the convergence as 7 — 0 of ag(xo + e;r, 2|r|) to vg(zo),
the same limit as that of a(x,r), as we approach along offset balls.

[Step 3.] Finally, we prove that vy = u a.e. (at each Lebesgue point of u) which
completes the proof. Here (0) € R? is the empty multi-index.

2.2.1 Limits for the derivatives of the minimising polynomials

We first establish the convergence of the coefficients of minimising polynomials at each
point. These results correspond roughly to [11, Sect. 2&3]

Lemma 2.13. Let P € P, and A > 0. There ezists C(k,q,d,\) > 0 s.t. for each
E C By (x0) with |E| > Xrd, and any multi-index 16| < K,

C
|D6P(x0)|q < MH‘M/E ’P(.Z)‘qu

Proof. Denote by 7, C &7}, those polynomials who’s coefficients satisfy

P(x) = Z agz?; Z a% = 1.

18|<k 18I<k
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Let F denote all measurable functions supported inside Bj(0) with 0 < f < 1 and
I} B, fdx > A\. We then define the quantity

= ot [ P@ @)

" Per, feF

We show this is a minimum. Take sequences P;, f; approaching the infimum, then since
the coefficients of P; are uniformly bounded and there are finitely many, we can apply
Bolzano-Weierstrass to each coefficient sequence to obtain a convergent subsequence of
degree k polynomials, and the limit clearly lies in 74 also.

Similarly, we can pass to a weak L? limit for f since they have f; < 1 so are uniformly
bounded in L? norm by |Bj|. It is clear the class F is stable under weak convergence so
the limit is also a member.

Consequently, v(A) > 0, since the P-lim must be # 0 a.e as polynomial, and the f-
lim must be positive on a non-negligible set by the integral condition. Thus by taking
f = xg we have that for all P € 7,

[ IP@las =) it 18] 2

_1
Now for a general P € &, P(x) (ZIB\Sk a%) * € 1, so for each E C By with |E| > A,

S a2 < fy(l)\)/E]P(x)de

181<k

and specifically
: /
agl! < — [ |P(z)?dx. 2.6
|as| 7(/\)E\(! (2.6)

Now take P € &, and E C B,(xg) measurable satisfying the regularity property. The
change of variables T'(x) = ** gives

/ P(2)|%da = / |P(g + ry)|dy,
E T(E)

with T(E) C By and |T(E)| = 2 [, dz > X. Taylor series gives

T|ﬂ|’D5P($O)‘y6

Pleo + )= 3 P,

18I<k

and so |i applied to the above polynomial gives the result with C' = (f&; O

Lemma 2.14. Let u € L} (), and P(z,x9,7) denote the minimiser of . There
exists C(q,0) >0 s.t. for all zg, r and h € Z>o,

J [Pa,z0,r27") = Pa,zo,r27"7)|"de < (Clulf,, ) 2777
Q(zg,r2—h—1)
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Proof. We have

|P($,$O,T27h) - P(x’x()arzihil”q S2q|P(x7x07r27h) - u(x)|(1
+ 29| P(x, xo, r2_h_1) —u(x)|9,

So that by definition of P as the minimiser of (2.2) and that Q(zg, r27'=") C Q(zg,r27"),

/ ‘P(x,a:o,ﬂ*h) - P(x,wo,r27h71)|qu
Q(xo,r2-1-h)

SQQHP( - a0, 727 ") — UHL‘I(Q(:UO,TQ*’L))
+20[[P(- 0,127 M) — |

Q(zg,r2-1=h))

<29(1 427 Jufld,, 270,

since u € L}, which gives the estimate with C' = 29(1 +277). O

Lemma 2.15. Let u € LI°(Q), Q satisfy and P(x,xo,7) be the minimiser of
and ag(x,r) as . There exists C(k,q,0,d,Q2) > 0 s.t. for all xo, r, i € Z>o and

18] <k,
il h +|ﬁ| o—d—q|B|
k,q,0 2 rooa .
h=0

Proof. Fix xq,r, 1,3, then the triangle inequality gives

lag(z0,7) — ag(zo, 127" < (C|lully

i—1
}ag(xg, r) — ag(xo, r2_i)‘ < !ag(xo, 7"2_h) — ag(xo, r2_h_1)‘

>
LI

<.
|

|DP[P(wo, w0,727") = DP P(x0, xo, 727" )]|.

h

Applying Lemma [2.13'| to the polynomials Py, := D? [P(x, xg,727") — P(z, x0, r2_h_1)]

in the sum gives

Il
=)

1
‘ 1 i—1 a q
lag(zo0,7) — ag(zo,r27")| < Cfr_g_'ﬁ' 22(h+1)<q+|ﬁl) (/ |Ph|qu> ,
Q(zg,r2-1-h)

h=0

then applying Lemma to each integral gives the required estimate. ]

The consequences of the above are that for suitable parameters of our space, a limit for
ag(zo,r) exists at each o as r — 0, presented as in [I1, Lem. 3.4].

'Here, we pickup the domain constant dependence.
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Proposition 2.16. Let u € LI°(Q), Q satisfy and o > d+ sq for some Z>p > s <
k. For all multi-indices |B| < s, there exist functions vg : @ = R s.t. for all zo,7,

o—d—q|B|
lag(wo,7) — vg(x0)| < (Cllullkgoe)r ¢

where C(0,q,k,d,Q) > 0. Consequently, ag(xo,r) = vg(xo) uniformly in xo as r — 0.

Proof. Fix ,r,xo with |3] < s. We prove that the sequence ag(wo,r27") converges as
i — oo. For 4,j with j > i, Lemma [2.15] gives

A , Izl s o—d—ql8]
lag(xo,r277) — ag(xo,r27")| < Csllul|p,g,0 (Z 2h< ! >> 7”< ! )
hei

Since || < s and ¢ > d + sq the exponent of 2 is negative, so the tail sum
> d+|Bl-c
S () Lo
h=i

for i — o0, as the tail of a convergent geometric series. Thus

i ; o—d—q|B|
lap(e0,r279) — agao,r2)]| < or(T),

so that ag(xo, r27%) is a Cauchy sequence in 4, as the r exponent is positive. We now
show the limit does not depend on r. Let 1 < re9, then Lemma [2.13] gives

lag(wo,m127") — ag(wo,m227")]

9i(n+18lq) . g
< / [P, 20,m127") = Pz, xo,r227")|"de
Ty q Qxo,r127%)

o 2q2z‘(al+|ﬁ|q) / ‘P( 2i) ( )|qd
<C12"———— x,%0,712 ) —ul(x)| dx
T¢1i+lﬂ\q Qo 2-1)

+ / |P(2, 20,7227") — u(z)|"dz
Q(IO,TQQ_i)

<C129||ul/f s 9~ie=d=1Bl9) 0 as i — oo
=1 k,q,ff rd+‘ﬁ|q ’
1

Thus the limit is independent of r, so the functions vg are well defined. For uniform con-
vergence, again from Lemma and that the sum is convergent so uniformly bounded

in ¢, we have
. o—d—q|B|
lag(zo,7) — ag(zo, r27")| < (Cllullggo)r

Passing to the ¢ — 0 limit we have now the convergence uniformly in r. O
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2.2.2 Continuity of the limit functions and differentiability relations

We will see that v = DPu (derivatives which a priori u need not have). First we show
V() € C*e and some differentiability relations, as in [I1, Lem. 3.2, Prop. 4.1].

Lemma 2.17. Let u € L}7(Q) and Q satisfy . There exists C(k,q,d,0,9) > 0
such that for each pair of points xo,yo € 2 and any multi-indez || = k,

|ag(zo, 2|0 — yol) — as(yo, 2|zo — yo|)|? < (CHUH%W;) |20 — ol 7M.
Proof. Set r = |z — yol, then
’P(SE, Lo, 2’/“) - P('Ia Yo, 2T)|q §2q|P(x7 xo, 2T) - u(:l:)|q
+ 29| P(z, yo, 2r) — ().
Integrating, noting Q(zo, ) C Q(yo,2r) and using u € LL7(Q) gives
| IPGa0.20) = P, 20) s
Q(zo,r)
§2q/ |P(z,x0,2r) —u(z)|dx + Qq/ |P(z,y0,2r) —u(z)|?dx
Q(z0,2r) Q(yo,2r)
+o+1 o
<2 || Z,qpr .

Finally, Lemma [2.13f| applied to P(x) = P(z,xq,2r) — P(x, 0, 2r), combined with that
the kth order derivatives are constant so we can be evaluated anywhere, we find

lag(zo,2r) — ag(yo, 2r)|? < <C|]uHZ7q,0> po—d—kq_
O

Proposition 2.18. Let u € L]7(Q), Q satisfy and o > d+ kq. Then for || = k

we have vg € C%(Q) with o = #, where vg are the limits of the derivatives of the
minimisers from Proposition [2.16]

Proof. Fix g with |5 = k and z,y € Q with r := |z — y| < M. The triangle
inequality gives

[vp(2) —vp(y)l < |vs(@) —ag(@,2r)| +[vp(y) — ap(y, 2r) + lag(z, 2r) —as(y, 2r)|.

Proposition [2.16] controls the first two terms uniformly in the required fashion and
Lemma @ controls the third, giving the relation for |z — y| < DaRL  For general
|z — y|, simply cover Q with balls of radius < DiaTmQ, and since the 2 is connected and
bounded, a finite subcover gives us an upper bound on the number of steps a piecewise
affine polygonal path from x to y with vertices inside €2 should take, so by repeatedly
applying the triangle inequality along the vertices of any such path we get the Holder

condition for any x,y € Q. O

2Here, again we pick up the dependency on the domain regularity by applying this lemma.
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We now show the differentability relations, corresponding to [I1, Thrm. 4.IT]. Here we
present the proof with a different induction assumption than in the original paper, but
with the same result.

Proposition 2.19. Let u € L{°(Q), Q satisfy and 0 > d + kq with k > 1. For
each multi index with |3| < k —1, the functions vg defined in Proposition have first
order partial derivatives in ), and they satisfy

v
815 =Vgte; fori=1,2,...,d.

Proof. Fix g with |3| < k — 1. The previous proposition gives the continuity of all
vy with |y| = &, so we proceed by induction backwards from this case, assuming the
hypothesis that v, are continuous for all v > 3 (for the partial ordering of multi-indices,
where all entries 7; > ;). Let o € £ and r be suitably small so that xg + e;r € Q also.
Consider

ag(xo + e;r,2|r]) — ag(xo, 2|r|) _Dﬁ [P(z0, mo + re;,2|r]) — P(zo, 20, 2|7|)]
T T
+D5 [P(:):o + rei, xo + reg, 2|r|) — P(xo, xo + re;, 2\7“])]
r

=)+ (I1).

We claim that (I) — 0 and (/1) — vg4e,(20) as 7 — 0. For (I), as in the proof of

Lemma [2.17°| and using Lemma we deduce

<t ©

— ato+11,14 o _ o—d—(|Bl+1)q
_‘T’q ‘7””""5"12 Hqu,q,U’r‘ C(kvqa U76>Q)T

which vanishes for » — 0 as the exponent of |r| is positiveﬁ

For (II), set P,(x) := P(x,xo+7e;, 2|r|). We claim the induction assumption of continu-
ity gives all coefficients of the polynomial D P, (z) converging (a priori they could have
diverged). Indeed continuity gives that for each v > 3, we have DYP,.(x¢) — vy(z0).
Working backwards from the highest order derivatives, with |y| = & DY P,(x) is constant,
and is equal (up to a factor of 4!) to the 27 coefficient of P.. Then stepping back one
order at a time, all of the coefficients of D7P.(z) must have limits, and these limits
necessarily must be v, (z) times the corresponding factorials. That is, setting

— UV~ (T _
DPP(w)i= Y cppa™;  Pla)i= Y ('YE[(;))‘(;,;_%W 5.
By by 7 '
<k i<k

3Here we can apply this since |r| = |(zo + re;) — zo|, Lemma certainly does not hold for any r.
“We have 0 — d — (|8] + 1)g > 0 — d — kq > 0 as here we are assuming || < k — 1
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we have DPP, — P uniformly on compacta as r — 0. Since these are analytic, also all
derivatives converge and hence we getﬂ
DB P, (xg + re;) — DPP(xq) DA oP

li = = ‘ .
rl—r>r(l) r ox; o UB+te; ($0)

We now show that

i U8 @0+ red) —vpzo) _ . ap(@o +eir 2|r]) — ag(@o, 2|r])

r—0 r r—0 T

which would establish the result. From Proposition [2:16]

v (o) — ag(wo, 2|r])
r

- C‘T’(J_d_q;‘ﬁ‘-'—l)).

Since |B| < k — 1 the |r| exponent is positive so this quantity vanishes with r. An
identical statement also holds replacing x¢ with xg + re;. Finally, we note that

va(@o + rei) — v(xo) _ap(wo + eir,2lr]) — a(eo, 2Ir))

r r
N vg(wo + re;) — ag(xo + res, 2|r|)
r
ag(xo, 2|r|) — vg(wo)
+ )
r
which gives the equivalence of limits by the above discussion. O

2.2.3 Campanato = Holder

Equipped with the above, we can now finally prove both directions of Theorem
corresponding to [11, Thrm. 5.11]]

Proof that Campanato functions are Holder. The previous sections give vy € Cke(Q),
we now prove that vg = u a.e. where (0) € R? is the zero multi-index. We show equality
holds at each Lebesgue point of u, points zg such that

lim |u(z) — u(xo)|?dx = 0.
r—0 Q(zg,r)

For such an z(, we have
\G(O)(iﬁo, 7) — u(wo)|?

< C(q) <\P(:r,xoﬂ”) = a(o) (o, )| + [P (2, 20,7) — u(2)|? + [u(x) — U(xo)!q>-

If f. — f uniformly and z, — « then f,(x,) — f(x). In this case, f.(z) is the difference quotient.
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Average integrating over Q(zo,r) and using the regularity property (2.1]) gives

C(q)/
ao) (o, T 7< P(x,x0,7) — ag(zo,7)|%dx
| (0)( 0 ) ( )‘ C T (xor)| ( 0 ) (0) ( 0 )|

Clq) Ty
Cm /x P o) —u@)ra

:L’Oa | / Q(zo 7”) - u<x0)’qu
(1) + (I1D).

We claim all terms vanish as r — 0, giving lim, 0 a(g)(z0,7) = v(0)(20). (I1I) vanishes
by the definition of a Lebesgue point. For (I1), by the definition of £

(11) < Clq, Qullt, 7,
which also is infinitesimal with r. Finally for (I), using Proposition

=2 [ | Y aswn@ )

1<IBI<k

SC(kaadaﬂ) Z ‘aﬁ(mo’r)’rlﬂ\q_)()’
1<|B|<k

as the limits of ag(zo,) are controlled uniformly as r — 0.

Proof that Hélder functions are Campanato. Let u € C**(Q), fix 2o and consider the
degree k — 1 Taylor polynomial of w at xg. For each x there exists some 3, € R™ on the
line segment between x and xy with

Bu(x PFu z
u(z) = Z Dﬁgo)(a:—xo)ﬁ—i- Z Dﬁgy)(az—xo)ﬁ.

|B|<k—1 1B|=F

by the Lagrange form of the remainder. Thus the distance of u from its degree k Taylor
polynomial is controlled by

u(z) — Z Dﬁlﬁtgxo (& — o) ' ' Z DPu(y, ﬁ‘Dﬁu(xO)(m—xo)ﬁ
1BI<k |Bl=k ’
<[ulia 3 ﬁ,\x—mor*” o — ol
|B|=k

= C(k)[ulkalz — 2ol 7,

where we used that (z —x¢)? < |z — x0|F for any |3| = k. Integrating over Q(zq,7) gives

- 4de < O(k o,
pné,lé}k/mzm u(e) = Plejitde < CRllar

so that u € £]7(£2), and Theorem is proven. O
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3 Regularity for elliptic equations

Let © C R? be a bounded, open connected set. In this chapter, we discuss the regularity
of solutions to scalar linear elliptic PDE of the form

V-(AVu) =V -F inQ, (3.1)

for a vector field F : Q@ — R? and a matrix-valued 4 : Q@ — R%? which is always
assumed to be uniformly positive definite and bounded; in the sense that there exists
0 < A < A such that for each z € (Q,

Myl? < yTA(z)y < Aly|? for all y € RY.

We call u a “solution” to (3.1)) if u € H(Q) and

/(AVu) -Veodr = / f-Vpdz for all p € H} (),
Q Q

and we do not consider any boundary data on 92, choosing to focus on the interior
regularity. Where it is clear throughout the chapter, we take Br(xz9) = Bpr as well as
ignoring integration measures where clear, to ease some of the notation.

3.1 Interior Sobolev regularity for L? coefficients

Our goal in this section is to establish Sobolev regularity of solutions to our PDE (3.1)).
The idea is to consider a difference quotient

u(z + he;) — u(x)
h

for a unit vector e;. This acts as a sort of discrete derivative, which we will show is

uniformly bounded over h in L? norm for solutions to our PDE. Then we use that

bounded sequences in reflexive Banach spaces have a weakly convergent subsequence to

deduce a limit as h — 0. We show that the limit of this satisfies the required properties

to be a weak derivative of u, thus giving higher regularity (we actually do this process
for Vu, not w). This section follows [14, Ch. 4.2, 4.3], as well as [26, Ch. 5.2].

Dhu(z) ==

forx € Qp:={recQ:x+he € Q},

3.1.1 The method of difference quotients

We begin by gathering some results regarding difference quotients, as found in [14], Ch.
4.3].
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Proposition 3.1. Let u € H(Q), then D'u € HY(Q;}) and the commutativity with
weak derivatives D(D'u) = DI(Du) holds. If either u,v € HY(Q) are compactly sup-
ported in ) then for suitably small h,

/uDZhvdx = / D;huvdx.
Q Q

We also have the Leibniz rule

Dlh(uv)(x) =u(z+ hei)Dzhv(x) + Dzhu(ac)v(x)

Proof. The first two claims follow directly from the linearity of Sobolev spaces and weak
derivatives. For the second, direct calculation yields

1
/ uD!" + Dy Muvde = 7 / u(z)v(z + he;) — u(x — he;)v(x)de. (3.2)
Q Q

Since one of the functions is compactly supported the infimum distance of the support
from the boundary is positive, so for A small, the change of variables on the first term
y = = + he; keeps the support of uDZhv and D, huw inside Q, and thus the two terms in
(3.2) cancel out. The Leibniz rule is just a direct computation. O

Lemma 3.2. Let 1 < p < oco. For every Qg € Q, u € W'P(Q), i = 1,...,n and
|h| < Dist(0,)/2 we have

1D}l Loy < IVl Lo()-
Proof. since C*() is dense in W1P(Q) and the inequality is stable under LP, hence

Sobolev convergence, we need only prove it for u € C*°(Q2). The fundamental theorem
of calculus gives

Dlu(z) —][h 0 u(x + te;)dt
i = ) &m 7 )

then we use Jensen’s inequality followed by Fubini’s theorem,

h
D¢ ullpa = | 0 I

h
g/][ |Vu(z + te;)|Pdtdx
QoJ0

h
S][ /]Vu|pdxdt:HVuHip(Q).
0 JQ

P p
oz, u(z + te;)dt| dx

O]

Proposition 3.3. Let 1 < p < 0o and Qo € Q. Let u € LP(Q2) be such that there exists
M > 0 with

HDZ}'ZUHLIJ(QO) < M for all |h| < Dist(Q0,) and eachi=1,...n.
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Then u € WHP(Qo) with |0y ul|roq) < M, and DMy — Op,u in LP(Qg) as h — 0 for
each 1.

Proof. Fix i, by the reflexivity of LP(Q2) and that D}u is uniformly bounded in h, we
have a weakly converging subsequence h,, with limit we call g. By definition of weak

convergence in L? as a duality product with L? with ¢ the Holder conjugate, and that
C°(Qp) C L1(Qp), we have for all ¢ € C(Qp),

/ gpdx = lim Dhmugodx
Qo

m—0 Qo

= lim —/ uDi_hmgod:n

hm—0

/ Op dzx.
Q0 Yo,

Thus g = %“i in the sense of distributions, so the distributional derivative has an L?

representative, hence u € W1P(€)y). For the strong convergence, taking an arbitrary
v E COO(Q()),

ou 0 ov
Dhy — = DMy — - Dh — =22
Pu— g = Dlu =) + 5 (u—v) + (Do = 52,
so that
L I 1= U S PO WA (=T <o) N
ox; L7(Q0) Lr(Qo) Ox; LP(90) Iz LP(Q0)

Taking v arbitrarily close to u by density of C°°(€g) in W1P(Qg) makes the first two
terms arbitrarily small. Then since we have strong convergence of the difference quotient,
the third term goes to 0 as h,, — 0. O

The following inequality acts as a sort of “reverse-Poincaré” inequality and will be crucial
for uniformly bounding the difference quotient. This is adapted from the case for systems
found in |14, Ch. 4.2].

Theorem 3.4 (Caccioppoli inequality). Let u solve with A having eigenvalues
between 0 < A < A for each x. Then there exists a constant C(\,A) > 0 such that for
any r < R,

1
\Vu|2 <C / (u— a)2 —|—/ \F!Q
/BT(Q:O) (R=7)% ) Br(z0)\ By (20) Br(z0)

for every xg € Q and a € R.

Proof. Take a cut-off function n € CZ°(€2) with the following properties:
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l.n=1on B, andn=0o0n Q\ Br
2.0<n<1
3. |v77’§R2—r

Considering the test function ¢ = n?(u — a) with Vo = 7°Vu + 2n(u — a)Vn gives
/ 7 (AVu) - Vu = — / 2n(u — a)(AVu) - Vn
Br Br
—i—/ 2n(u—a)Vn-F+/ n”Vu - F
Bgr Br
=)+ (II)+ (III). (3.3)

By uniform positive definiteness and properties of n we also have

1
/B |Vu|? §/B 7| Vul? < )\/B *(AVu) - Vu. (3.4)
s R R

So if we can bound the three terms (3.3) suitably then we are done. These can all be
estimated using Young’s inequality 2AB < A% + %2 for € > 0. For the first integral,

on Ou

AZ] 2 — —
Z /B 77 “ (I) 8:62 8.%'j

1,7=1

< z": /B Ai(x) <(u a) ggz) + A" (x) (775:1;1;)2
/| ol A /| ROl

4A / 2 / 2 2
< - u—a) +eA n°|Vul*,
e(R—r)? BR\B,.( ) Br [Vl

where we used that V7 = 0 on the smaller ball as well as the bound |Vn| < 72— on the
final line. Identical estimates give

4
I < ——— u—a2dx+5/ F|?
s g [, @earase [

1
(1) < < / 7| Vulde + - / | FI2.
Bgr € Br

Then choose € such that A\ > (A + 1/2) so that the coefficient of the n?|Vu|? term on
the RHS of (3.3) is less than A so we can rearrange considering (3.4)), thus giving the
required estimate. ]

We can choose such an 7 with this bound since to interpolate linearly down from 1 to 0 as we move
out radially from r to R would give a gradient of 1/(R — r), so we allow the factor of 2 to smooth out
either end.
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3.1.2 Sobolev regularity

Equipped with the above, we now establish Sobolev regularity, as in [14, Thrm. 4.9].

Theorem 3.5 (Interior regularity). Let u solve with the additional assumption of
the coefficients that F € H'(Q) and A is Lipschitz. Then u € HZ ().

loc

Proof. By density, for a weak solution it is sufficient to only test against ¢ € C2°(Q).
Since {2 is open, the support of each ¢ is bounded away from the boundary. Thus for
h < 1, we can also test against the translated ¢(x — hey) as its support lies in 2. Then
after a change of variables, we ascertain

/ (A(z + he))Vau(z + hey)) - Vopla) = / Flz + hes) - Vio(a).
Q Q

Subtracting the un-transposed weak formulation from the above and dividing by h gives
/ DMAVu) -V = / DI'F -V
Q Q
/ (AVD!Mi) - Vo + / (DFAV) - Vo = / DI'E -V,
Q Q Q

where Dzh acts component-wise on vectors/ matrices, and we used the Leibniz rule for
the commutativity of the difference quotient with the derivative from Proposition [3.1
Now restricting to any ball Bagr(zg) C €2, this tells us that Dzhu is a weak solution to
the PDE in v

V- (AVv) =V - (DI'F — DI AVW), (3.5)

where here we considered u as a fixed term. The Caccioppoli inequality gives

/ | Divu? g% (D?u)2+c/ |D§LF|2+O/ |DFA Vul?
Br R Bar Baogr Bar

=(I) + (II) + (I11).

Since u and F are both Sobolev, the L? norms of their derivatives are finite and provide
an upper bound for that of the difference quotients, so by Proposition (I) and (II)
are uniformly bounded in h. The Lipschitz assumption on A gives a uniform bound
to |DIA(z)|, so again using Proposition combined with Vu € L2, the third term is
also uniformly bounded in h. Thus D?Vu is uniformly bounded in L? norm over h, so
applying Proposition to each component followed by a covering argument establishes
the regularity u € HZ (). O

loc

We can extend the above to equations with higher-order coefficients by induction, a la
[14, Thrm. 4.11].

Theorem 3.6 (Higher order regularity). Let u solve , and assume the additional
reqularity of the coefficients
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1. F e H*Y(Q),
2. AU € CF1, so that DPAY is Lipschitz for any multi-index |3| = k.
Then u € HE2(Q).

loc

Proof. The case k = 0 is precisely Theorem [3.5] so we proceed by induction assuming
the result holds for £ — 1. Take ¢ € C2°(2) and test against ¢ := 0—w then integrating

by parts gives
0
fyxt

fa(vos) vu- /( axszgfi)w.

The above gives g“ as a weak solution to the PDE V - (A(z)Vu) = V - F', where

. 0A oF
F = —&UiVu—i- R

Note that F € HE (Q), by the induction assumptions and that any kth derivative of A is

Sobole Thus the induction assumption gives g—“ HF(Qp) so that u € HEF2(Q).

loc loc
The estimate also follows inductively from the computations. ]

Corollary 3.6.1. Let u be a weak solution of V - (A(x)Vu) =V - F, with A uniformly
positive definite and bounded, with F, A € C*®(Q). Then u € C*(Q).

Proof. The above theorem gives u € Hfgc(ﬂ) for all £k > 0, so the result follows by
Sobolev embeddings. O

3.2 Schauder estimates: interior Holder regularity

In this section, we discuss Holder regularity of solutions based on that of the coefficients.
It turns out that this is best attacked obliquely, making use of the theory of Campanato
and Holder spaces developed in the previous chapter. This approach is well-motivated
since the weak formulation of the PDE is an integral condition, so showing energy bounds
seems tractable.

2Lipschitz functions are always locally Sobolev, and Sobolev on bounded domains by Rademacher’s
theorem.
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3.2.1 Energy growth estimates

To prove that solutions u to our PDE lie in L7 or £} spaces, we need to show that
the growth of energies of the form ¢ : [0,R) — [0,R)

QS(T):/B ]u—uzo,r|2dx or d)(r):/B |u\2da:

satisfy o growth conditions, being controlled globally by constants ¢(r) < Cr?. To help
establish this we will need some estimates and the following lemma, found in both [14]
Ch. 5] and [26, Ch. 5].

Lemma 3.7 (Campanato iteration). Let ¢ : [0, Ro] — Rt be an increasing function,
which for r < R satisfies

o) < A(e+ (5)") o(R) + BR?

for some constants A, B,e > 0 and « > 3 > 0. Then there exists g = £o(A, a, B) such
that if € < gy then ¢(r) < CrP for all r € [0, Ry] for some C = C(A, B, Ry, ¢(Ry), a, 3).

Proof. For 0 < 7 < 1 we have ¢(7R) < (¢ + 7%)¢(R) + BR®. We assume without loss
of generality that 24 > 1, and take v € (8, «). Then we can choose 7 € (0, 1) such that
2A7% = 78, Choosing g9 = 7%, we have for ¢ < ¢

¢(TR) < 77¢(R) + BR®.
Iterating this estimate gives

(7" R) <rV¢(r*'R) + Brk-DB RS
k—1

<" ¢(R) + BRPr(k-1)8 Z FI(=8)
j=0

§7k6¢(R) + BRPA(k=1)8 Z +i(—=5)
=0

< |+ 84,28 ZTJ(W—B) (6(Ro) + BRg)T(kH),B
=0

<C(A, B, a, 3, Ry, ¢(Ry))rk+DP

since |7| < 1 and 7 > [ so the series is convergent and thus bounded, and we also used
the monotonicity of ¢. Now for any 7 choose k € N such that 7**1R < r < 7*R then

o(r) < gb(TkR) < or+D8 < C’rﬁ,

by the monotonicity of ¢ and the fact that 7#+! < g ST O
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The following gives very strong controls on the decay of ZFBT |u|? in terms of 7, proved as
in [26, Prop. 5.7].

Proposition 3.8. Let u be a weak solution of V - (AVu) = 0 in Bgr(z), where A is
a constant positive definite matriz with eigenvalues bounded between 0 < A < A. Then
there exists a constant C = C(\, A) such that for all R > r >0 and xo € Q we have

r\d
lul?dz < C (= / RGeS (3.6)
/B,«(mo) (R) Br(zo)

d+2
/ 4 — gy p|2dz < C (%) / lw — gy g |2da, (3.7)
Br(w0) Br(zo)

where g, , = JCBT udz is the average of u on B(x¢).

and

Proof. For , we begin by noting that if V - (AVu) = 0 then ua(z) := u(AY?z) is
harmoni(ﬂ Harmonic functions stay harmonic after an orthogonal change of basis so we
need only consider a diagonal matrix. For up(z) := u(D/?z) with diagonal matrix D,
the expression for Aup is precisely V - (DVu).

Since (-)? is convex, |u4|? is subharmonic, so mean value formulas give

][ lugl?da S][ luq|dz,
Br Br

d
/ lual?de < (%) / lual?de.
B Br

Applying the change of variables y = A'/2z and noting that By, ¢ AY2B, and AY2Bp C

BaRr gives
d
lu|?dz < r lu|?dz.
R
Bir Bar

Now with ' = A\r and R’ = AR, this gives

N\ d
/ uf?de < C <;/> / luf2dz
B B,

for the constant C' = (%)d Here we are still under the condition » < R for our applica-

/
T

tion of the mean value formula, so we have proven the inequality in the case r’ < %R’ .
Alternatively, if we were to restrict ourselves to the case r > aR for some a, we can take
C =a~?, since

/BT lu|?dz < <Ij>d (;)d/BR lu|?dz < C (;)n/BR lu|?d.

3Here, A'/? is the square root defined for positive matrices as A2 := PTD'Y?P where A = PTDP
is the diagonalisation of A with P orthogonal and D diagonal with positive entries, and DY? is given
by taking the square root of each diagonal entry.
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: . . d
So in fact for any r < R without restriction, we can take C = (%) .

For (3.7)), we use the Poincaré-Wirtinger inequality (Theorem [B.4) combined with the
first inequality, and then Caccioppoli’s inequality,

/]u—uwo’r|2dx§0r2/ |Vu|*da
r B,
d
<2 (X 2
<C'r <R> /B |Vu|*dz

R
e 1)?
<Cr? (E) (R) / |u — gy 2r|*d.
This gives us a global constant for the case r < R/2. Now for the cases r > aR, noting
that ¢ — [ (u— t)2dw is minimisedﬂ by taking ¢ = ugy, ,;

/ \u—uxo,r\de S/ \u—uxo,R\de
B, By
S/ U — Uy |*d < (1) () / U — gy | *de.
Br R a Br

So taking C' = 29+2 works for all pairs of radii with » > R/2, and taking the max of the
two estimates gives the global bound as before. O

Remark 3.9. Since the coefficients are constant and the equation is linear, if we knew
higher regularity of u we could differentiate the PDE to get any derivative of u satisfying

d
/ |Vu|?dz < C (1) / |Vu|?dz,
Br (o) R7" JBg(x0)

and similar for the second inequality or with any higher-order derivatives we know to
exist.

Remark 3.10. In both inequalities, the difficulty was bounding the energies for arbi-
trarily small ratios of /R, with the estimates for large values of /R not using any of
the data from the PDE. So the important part of this result is that the local energy
of solutions to elliptic equations grows at most sublinearly as we increase the radius,
one cannot have local sharp spikes in the gradient without these affecting the global
behaviour.

Finally, we will need the following control in terms of the flux [26] Lemma 5.9].

Lemma 3.11. Let F € L?(Bg) and A be uniformly positive definite and bounded with
eigenvalues between 0 < X < A. Then there exists a unique solution w € H}(BR) of
, and this solution satisfies

>\2/ |Vw\2dx§/ |F—FIO,R|2dmg/ |F[2da,
Br Br Br

4Simply expand the square and use linearity then optimise in t.
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where Fp) g € R? is the componentwise averaged vector, s.t. (Fyo,r)i = § Fidz.

Proof. The existence and uniqueness are a result of minimising the strictly convex func-
tional w — [(3A(z)|Vw|> — F - Vy)dz. For the bound, we test the weak formulation
against w giving

/ AVw - Vwdzx = F-Vwdx = / (F — Fyy,r) - Vwdz,
Br Br Br

where we smuggled in the additional term since w € H}(Bg) so [Vw - ydz = 0 for
each constant y € R%. Similar to the proof of Caccioppoli’s inequality, we use the lower
bound of the LHS integrand \|Vw|?:

)\/ |Vw|*dx §/ (F — Fyy.g) - Vwdx
Br Br

> :
< </ |F — FxO,Rlzdx> </ ]Vw|2d:1:>
Bgr Br

)\2/B |Vw]2da:§/B |F — Fyy pl*dz.
R R

3.2.2 Holder regularity

We can now establish the regularity of solutions to (3.1). We do this in three stages,
first for constant coeflicients, then continuous coefficients, then a general statement for
Holder continuous coefficients. These correspond to [14, Ch. 5] and [26, Ch. 5].

Theorem 3.12 (Regularity with constant coefficients). Let u solve with A constant
and positive definite. If F € £57(Q) with 0 < d+ 2. Then Vu € L7 ().

Proof. Take an arbitrary Br C Q, and define ¢(r) := [5 [Vu — (V) gor|2dz. We want
a global C such that ¢(r) < Cr?. We begin by decomposing into homogeneous and
inhomogeneous parts © = w + v, where w and v are the unique solutions to

w=20 on JBp,

V- (AVw)=V-F in Bp V-(AVv)=0 1in Bp
V=1 on 0Bg.
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Note that (Vu)g,,r = (V)4 since (Vw)z, g = 0. We then estimate
6(r) = / IVt — (Vi) gy 2 —/ Vo — (V0)agr + Vool ?da
By
/ Vv — (Vo) 373()T]2(fl.ac—i—2/ |Vw|*da
B

<C

d+2
) / Vo — (V0) .z dx—|—2/ Vw|2dz
B

R

Br

(7
(%) / Vu — (V)zy.r — V| dx—|-2/ \Vw|?da
< (%

d+2 9 9
) / IV — (Vi) g2dz + C | [Vw|?dz
Br

<o (D) om v o /B P Frafde < € (5)" o(r) + ore,

where we used Proposition on the third lind’ then Lemma followed by F €
L27(Q) on the final line.

Thus the conditions for a Campanato iteration (Lemma apply, giving C' with ¢(r) <
Cr?, and hence an upper bound for the Campanato seminorm on an arbitrary ball of
radius R inside €. A covering argument gives Vu € Eg’U(K ) for each K € Q. O

Theorem 3.13 (Regularity with continuous coefficients). Let u solve with A con-
tinuous, uniformly positive definite and bounded. If F € L*°(Q) for some o < d then
Vu e Lloc (Q).

Proof. Fix a ball B = Br(zg) C €2, and decompose u = v+w, with w and v the unique
solutions to

V- (A(zo)Vw) =V - (F + (A(zo) — A)Vu) in Bg
w=20 on JBg,
V- (AVv) =0 in Br
v=u on JBpg.

Set G := (F + (A(zg) — A))Vu and ¢(r fB |Vu|?dz, then as before

6(r) < 2/ |VU|2d:L‘+2/ Ve
r By

d
sc(r)/ \vuPde/ Vuwda
R/ [, Br

d
<o (%) / Vulde +C [ [Voltds (3.9)
R/ Jp, Br

(3.8)

<C (%)%(R) ro | |G

Br

SFormally, we are using Remark and the additional 1 step regularity we have from Theorem
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The final term is bounded using
/ |G|2da:§2/ \F|2dm+2w(R)2/ Vul?da
Br Bgr Bgr
where w(R) := sup, ,ep, |A(r) — A(y)| is the modulus of continuity of A. Then since
F e L%,
r\d
6(r) < C () 9(R) + CR + Ceg(R).

Taking w(R) suitably small for the ¢ in Lemma gives ¢(r) < Cr?, hence Vu €

L*?(Bg), and the result once again follows from a covering argument. O

Theorem 3.14 (Regularity with Holder coefficients). Let u solve with A uniformly
positive definite and bounded and A, F € C%*(Q). Then Vu € C2%(Q).

loc

Proof. Fix Br C 2, define ¢(r) := fBR |Vu — (V) »|?dz and decompose u = v + w as
in (3.8). then the computations up to (3.9)) give

o) < (D) om o [ |vuPas (3.10)
<c(s 5

The second term is bounded this time using the sharper estimate of Lemma [3.11] giving

1 1
[ vl <5 [ 16 GuunPdo <5 [ 16 - Frynfa
<C |F — Fyy g|*dz + Cw(R)2/ |Vu|?dz. (3.11)
Br Br
Since A is a-Holder continuous we have w(R)? < CR?*. By Remark [2.7| we know

F e Ve podt2e C pod=e o 2d-2

for each € > 0. Theorem gives Vu € L?%¢ These estimates combine to give

loc

w(R)2 / Vul2 < C R+
B

Combining (3.10) and (3.11)) gives

d+2
o(r) < C (%) #(R) + CR2+d | o Ratd—e,

Then a Campanato iteration (Lemma |3.7) givesﬁ #(r) < Cr2e+d=¢ which in turn gives
Vu € Eg’%oofd*e(ﬁ) = Cloo’?_e/ 2(Q) In particular, since Vu is continuous it is locally

L so restricting to any B, € 2,

/B VulPdz < | B[ Vall e,

5Here we can replace the term with 2a + d with one with an ¢ if we make the constant large enough
as there is an upper bound on R.
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which gives w(R?) [ [Vul> < CR***4. Finally, returning to (3.10) and (3.11) we

ascertain

d+2
#(r) < C (%) $(R) + CR>H,
which gives the required regularity by another Campanato iteration. O

Corollary 3.14.1. Let u solve with A uniformly positive definite and bounded. If
we further have A, F € C* then u e CTH(Q).

loc

Proof. We proceed by induction, the case k = 0 is the above theorem. Assuming the re-
sult for k, Sobolev regularity Theorem gives Vu € H ff)C(Q) and so we can differentiate
the equation. Denoting % = (-)" and differentiating, we have

V- (AVY)=V - (F' — AVu) =V -G,

with G € C% since F, A € C*t1® and Vu € Cl’f)ca by the induction assumptions. Thus

k1 . .
u' e C’IOJCr @ giving u € C*22 as required. O
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4 Regularity of optimal transport maps

In this chapter, we give an exposition of some of the recent work in optimal trans-
port regularity due to M. Goldman and F. Otto [16] [I5], where one of the key tools is
Campanato’s theorem. In most of this chapter, constants and controls are global, not
depending on any data other than the dimension and sometimes a Holder exponent. In
this case, we write < for the existence of a global constant. An assumption of the form
f(z) < g(x) with f,¢g > 0 indicates that f(x) is much smaller than g(x), and there is a
small constant 0 < C' < 1 such that f(z) < Cg(x) uniformly. As in the previous chapter,
we will ignore differentials where the integration measure is clear to ease some notation.

4.1 Statement and sketch of the proof

The quadratic case ¢(x,y) = |z—y|? is the most explored for optimal transport regularity,
due to its connections with the Monge-Ampere equation. We only discuss this case. For
transport between measures u = fdx and v = gdx, Brenier’s theorem gives the quadratic
optimiser of the form T = Vu for some u convex, which combined with the Jacobian
equation gives the Monge-Ampere equation

2 f(z)
det D?u(x) T(Vu@))’
There has been a wealth of study on Monge-Ampere, with the regularity theory being
studied extensively by Caffarelli in the 90s, as found in [10] as well as later contribu-
tions by De Philippis and Figalli [12, 22]. These regularity results are usually based on
forms of maximum principles which Monge-Ampere equations satisfy, as they are elliptic
equations in a certain non-linear sense, which we will not discuss.

Some simple examples show that in general, we cannot hope for a global regularity result,
indeed if we are transporting between a connected and unconnected domain, then every
transport map should be discontinuous somewhere. One can also construct examples of
connected domains where the map must have a discontinuity, considering some limiting
case which approaches disconnectedness - if the codomain consists of two large “islands”
with a very thin bridge between them. Caffarelli [9] proved that convexity of the target
domain was sufficient for numerous global regularity results.

Even in the case of a non-convex codomain, we might still hope for some partial regularity
result, and this is what we discuss in this chapter. In particular, we show there exist
open sets of full measure on which the optimal map is well behaved. In particular, this
chapter is devoted to proving the following theorem:

41



Theorem 4.1. Let E and F be two bounded open subsets of R with |E| = |F| and let
T be a minimiser of quadratic cost Monge problem

min{/ T —z*> T#XE:XF}, (4.1)
E

where by a slight abuse of notation Ty xE denotes the push forward of the measure x pdx.
Then there exist open sets E' C E and F' C F of full measure such that T is a CH®
diffeomorphism between E' and F'.

This result had been originally attained by Figalli and Kim[I3], but the proof we present
here is due to Goldman and Otto, as presented in [16] [I5]. This result is a result of a
bootstrap in two stages. The first is a classical result due to Alexandrov [I].

Theorem 4.2 (Alexandrov Theorem). Let Q C R? and u : Q — R be conver. Then u is
Lebesgue a.e. twice Fréchet differentiable, in the sense that for a.e. xg € §2, there exists
a vector vy, € R? and a matriz H,, € R such that for all x,

w(x) = u(xo) + Vg - (T — 20) + %(a: — J,‘())THIO(.T —20) + o |z — z0|?).

Proof of this result is omitted but can be found in [4]. The immediate consequence of this
is clear for quadratic transport. Brenier’s theorem gives an optimal 1" as the gradient of
a convex function, so we have a.e. differentiability of T" up to null sets. We focus on the
second part of the bootstrap, showing Ch* diffeomorphicity of T on an open set of full
measure, as is the focus of [16]. We sketch the proof below to motivate what is to come.

Sketch of the proof of Theorem (4.1

It is most instructive to deconstruct the proof in reverse. First, since both ygpdx and
xrdz are sufficiently regular measures, an inverse 7! exists a.e by Remark and
this is the optimal map from F' to E. The differentiability given by Alexandrov’s theorem
precisely means that locally the distance of both T and T~! from being an affine functionlﬂ
on some ball vanishes as we shrink radius.

For almost all pairs xg € E, yo = T'(z9) € F we will show that there exists an affine
change of coordinates so that the map has a fixed point 7'(0) = 0 (corresponding to the
former z¢ and yp) and is still optimal. Thus it is sufficient to establish the regularity
in some neighbourhood of 0 under the assumption that B C E N Fﬂ The previous
condition of being close to an affine function at g now becomes one of being close to
the identity on Bi. Explicitly, this will be quantified in terms of the energy

E(T,R) = ];]é T(x) — 2> + [T (z) — z|*d. (4.2)

In some sense to be defined. Think & la Campanato here, the sense in which we mean is not as
strong as Campanato a priori, but we will use this to establish Campanato.

2Here we use that the original sets were open to give some nbhd. of 0 for E, F after the change of
variables.
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Without the R?, this is the average displacement squared on B of T and T~!. With
the R? this becomes unitless, a local measure of how close T is to the identity. Due to
the affine invariance, we can assume R = 1 throughout most of the results. Thus we
focus on establishing regularity locally in By € E' N F by considering the Campanato
seminorm. We aim to establish C1® regularity, which amounts to comparing T to affine
maps. To do this we construct a harmonic function ¢ whose gradient’s first order Taylor
series is a competitor to the Lagrangian displacement T — x, superlinearly in terms of
E(T,1). Due to the various averaging factors in the energy , a superlinear control as
R vanishes corresponds to some o > d+ 2 Campanato seminorm control on the integral,
which is precisely what we need for C1* regularity by Campanato’s theorem.

The construction of ¢ is actually performed at the Eulerian level using the Benamou-
Brenier formulation

. Lo o
mm{//w:atp+dwy:o,p<-,o>=xE,p<-,1>:xF}. (4.3)
0 JRd P

We take the minimising pair (p, j) and define a harmonic function on By with Neumann
boundary condition Vi - 77 := fol j - 71 the average flux, where 77 is the outward normal
of 0B1. We then pass this to the Lagrangian setting, making use of some interior L
controls on the transport in terms of the energy £.

We will show that, given a superlinear control of the distance T'— x from V¢ in terms of
E(T, R), up to a suitable change of coordinates E(T,0) < 622&(T, R) is much smaller, for
any o € (0,1) and constant #(«,d) < 1. This is quite similar to Lemma Iterating
this procedure will allow us to control the Campanato seminorm locally around our fixed
point T'(0) = 0, which gives the regularity.

Before beginning the detail, we first note (without proof) the following two lemmas
on estimates for harmonic functions as well as some controls of functions with mixed
Sobolev differentiability conditions. These correspond to [16, Lem. 3.1&3.2]:

Lemma 4.3. For f € L*>(0By), let ¢ be the solution of

—AQOZO mn Bl
Ve-i=f ondBy,

with 7 here denoting the outward normal of 0B1. Then

[ oveks [ r (4.4)
B 0B1

sup (V29[ + [V2gl? + [Vel?) < / Vol?, (4.5)
By /o By

and for the annulus A, := By \ Bi—, we have for every r <1
/ Vel <Sr | f2 (4.6)
Ay 0B
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Lemma 4.4. Let A, := By \ Bi_, forr < 1. For any ¢ € L'(A, x [0,1]) which admit
weak derivatives satisfying the mized z‘ntegmbilitf] Opp € LY and Vi € L? we have

(/01 aBlw—w)Q)ésrl/?(/;AT rww?)i@/gl/m B, (@47)

where (x fo

4.2 Superlinear approximation by a harmonic gradient

In this section, we prove the two harmonic approximation results, first in the Eulerian
framework, then translating this into the Lagrangian setting.

4.2.1 Approximation of the Eulerian velocity

We need the following lemma [I5, Lem. 2.4], which will control the excess flux on an
annulus.

Lemma 4.5. Let f € L?(0B; x (0,1)) be s.t. for a.e. x € OBy, fo z,t)dt = 0. Set
A, := B1 \ Bi—, and define Q as all density-flux pairs (s,q) : A, x [0,1] — R x RY with
|s| <1/2 and q L? in spacetime, which weakly solve the continuity equatiorﬁ

Os+divg=0 in A,

qg-n=f on 0By x [0,1]
qg-1=0 on 0B1_, x [0,1]
s(z,0)=0 s(z,1) =0,

Then provided that (f01 f@B f2dsadt) V@) o r, we have

mf / / ~lq|? <r/ f2.
:q GQ 0 0B;

Proof. We first show that the class Q is non-empty by giving an explicit construction.
Define u : A, %[0, 1] — R as the mean free solution of the Poisson problem with Neumann
boundary conditions

—Au= 17 fyp, [z, 6)dS() i A, x (0,1)
Vu-i=f on 0B; x (0,1)
n=0 on 9B, x (0,1).

3the class of all such functions is a Sobolev type space with norm given by summing these the L' and
the L? norms.
N 1 1
“In the sense that for ¢ € C*' (A, x [0,1]), we have A fAr Ops +Vip-q= [, faBl f.
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We set q(x,t) := Vu(z,t) and s(x,t) := — fg div ¢(z, z)dz so that s, ¢ solve the continuity

equation in A, X (0 1) with the required boundary conditions. For ( fo I B f2)1/ ) <

r we have |s| <1 5, we need to check ¢ is square summable. As the minimiser of some suit-
able energy, Vut € L%(By) for each fixed ¢t. Multiplying the PDE by wu; and integrating
by parts, we have for each fixed ¢ E

/ |Vut|2 = / utft +/ CtUt 1= (I) + (II),
B1 0By B1

where ¢; = faBl ft- We claim we can control both (I) and (II) by [|Vu|| 2|l fill 2081)
then Young’s inequality would give

1
/ Vul <e / Val+ L [ g2
Bl B oB 1

So choosing ¢ suitably small to rearrange and integrating over ¢ we would have finite
spacetime L? norm. To control (I), with the trace inequality followed by Poincaré in-
equality (recall u; is mean free). we deduce

(1) < el 2By 1 felle20mr) S Nwtll syl fell 2oy S IVl 2 | fell2 o))

For (II), again using mean free Poincaré, we have

(1) S lellvell2 sy S W fellz@mny IV utll L2,y

so that Q is non-empty. Turning towards the control, we use duality a la [3] to write
the continuity equation condition in its weak form as a sup, giving

Sgagg// Lg?
=(’q§xllsf|<lsup{/l/ ;\qﬁ—/l/ satw+q-w+/1/831fw}
—sp it (] Sl [ sowsaso [ ol

where the sup is over all square 1 in the mixed Sobolev space from Lemma and we
interchange the order using Theorem We now optimise the integrand pointwise in
(s,q) ala [25, B] using that |s| < 1/2. This amounts to optimising

1
— §]q\2 —q-Vyforallg; and s+ —sd for |s| <

N

®Ignoring the factor of |A,| which is not relevant to the finiteness of the norm.
5Whose application is justified by 1) = 0 combined with the above construction to show the class is
non-empty.
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which gives

2 _ 2
i [ gl =sw{ [ S pens [ o
We now use that fol fdt = 0 to introduce a 1) := fol dt term, giving
1 1
—s = [ [ S0vep v+ [ [ rw-)
1/2 1 1/2
oot s+ ([, 2) () fe=) 1
<sup{ // (V91 + low) + //831f L w9

Setting F := ( fol /. 9B, f2)1/ 2, using Lemma, where we denote the constant attained
by C' > 0, followed by Young’s inequality gives

1/2 1 !

_! 2
<sup{ ([ [ w-o2)" =3[ [ avu +ratw\>}

1/2 F 1 1 /1

1/2 2 _ - 2
gszp{cFr (/0 /aA w) +o(d+1)/2//mratw Q/O/AT(\W)I +|atw|>}
1

Ss?pp{zCF%%—(Cr(dH - >// ‘8ﬂ/)’}

Finally using the assumption F2/(d+1) « (specifically, we need C' T(ﬂ% < %) gives

1 1 1
inf / / |q|2§F2T:r/ / f?
(s,0€QJo Ja, 2 0 JoB;

We can now prove the Eulerian approximation result, [16, Prop. 4.1].

Proposition 4.6. Let (p,j) be a minimiser to the Benamou-Brenier formulation ,
and assume that By C ENF. If the Eulerian energy fol fBl %\jP < 1 then there exists
@ : By = R harmonic in satisfying

d+2

1 1 , 1 1, a2
[ [ -l s(// u\) (4.8)
0 JBy,y P 0 JB P
2 ! 1 2
/ Yyl ,s// Lip.
Bl/g 0 Blp
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The proof is split into 5 parts as in [I5, Prop. 3.3].

Step 1. We choose a radius R € (1/2,1) (depending on the pair p, j) such that the flux
through dBp is controlled in L? (independently of p,j) by the overall Eulerian energy
inside Bj.

Step 2. We define ¢, explicitly as the harmonic function whose outward normal derivative
V-1 is precisely the average flux through 0Bg, making it a good candidate to compare
to the velocity g—f;.

Steps 3 and 4. We show the superlinear energy control by first showing a quasi-
orthogonality property which separates the Eulerian energy from the Dirichlet energy
term. We then construct a competitor p, j who has the harmonic flux inside a smaller
ball and only disagrees on an annulus, allowing us to only consider the energy difference
on this annulus, which is controlled by Lemma |4.5)

Step 5. We show the control on the Dirichlet energy.

Proof. [Step 1: Choice of Radius.] We begin by noting that by McCann’s displacement
convexity, Proposition [1.23| we have p < 1 and hence

1 1 1 1 1
/ / / (. D)2dtdSdr = / / (a2 < / / Lp.
1/2 J8B, J0 Bi\Bj 2 /0 0 JB P

We have for any f(x) that

1 1 .
/Bl\Bl/z fe) = /1/2 /83R fla) 2 2 Regl/le) </63R f(:r:)) ’

R a Leb. point of T—>faBr flz

so that we can find R € (1/2,1) (depending of p, j but the control is uniform) satisfying

! 2 ! 1 2
/ /m 5// Lie, (4.9)
9Bgr J0 0 JB P

and which is a Lebesgue point of 7 — j € L?(0B,) in the sense that
R+e 1
lim / / lj(ra,t) — j(Rx,t)[2dtdS(z)dr = 0.
0By JO

e—0 R—¢

We claim for this R, the continuity equation inside Br can be well understood with
boundary conditions, such that for all ¢ € H'(Bg x (0, 1)),

1 1
// ,oatqbﬂw:/ of + [ (1) - o(-0), (4.10)
0 Br 0 OBRr Br

where f = j - 7 denotes the flux out through 0Bgr. To prove this, we introduce the
cut-off function

1 if |lzg] <R—¢
ne(z) = B iR e <|g|<R
0 otherwise,
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and by the weak formulation we have for any ¢ € H'(Bg x (0,1))

1
@01 =000 = [ [ afondp+Vion]-5

! o1t o
=//ng<at¢>p+n5w-g// g - 7.
0 Rd € 0 BR\BRfe

Now taking ¢ — 0 and using the Lebesgue point property we obtain (4.10]).

Rd

[Step 2: Definition of ¢.] We define ¢ : By, C Br — R as a solution of

(4.11)

where f(x) = fol f(z,t). Note that all solutions are the same up to an additive constant,
and we are only interested in the gradient V¢ which is then unique. By construction,
this is a good time-independent candidate to compare to the velocity g—f).

[Step 3: The quasi-orthogonality.] By suitably rescaling all of the data, we can assume
R =1/2, and we do so to ease notation. In two steps, we now show the control (4.8).
First, we establish what Goldman and Otto refer to as a quasi-orthogonality property

! L. 2 ! L oo 2
—[j = pVe|" < =317 = IVol®. (4.12)
0 JBys P 0 JByp P Bi o

Here the left-hand side is still interpreted in the sense of ([1.6|), so that if p = 0 then j =0
a.e. in t € [0, 1] for the quantity to be finite and so also j — pV¢ = 0, and everything is
well defined. We compute

1 1 . )
. ;!J—pvw\
1/2
1 1 1 1
:// |j|22// j-Vso+// p|Vel?
0 JBy,y P 0 JBi 0 JBy
1 1 1 p 1 )
[ [ Sit-z[ [ a-Diver-2[ [ (G-ve-ve
0 JBys P 0 JBijs 0 JBy)s
1 1 1 1 '
<[ [ Sur-[ [ w2 [ (G-Ve)-Ve
0 JBy,y P 0 JBy 0 JBi)

where we used that p < 1 by the displacement convexity Prop Now using (4.10))
(recalling we took R = 1/2 for convenience) testing against ¢ and noting most terms
vanish as ¢ has no time component, we get

1
/ J'-V<p=/ (90/ f)z/ soVsO-ﬁ:/ Vo|?
B2 0By /2 0 0By /2 B2

48



where the second equality is due to (4.11]) tested against ¢. Consequently,

1
/ / (1= V) Ve =0,
0 /By,
and (4.12)) is proven.

[Step 4: The main estimate.] We now establish

1 1 442
1 1. a1
[Lodue= [ wers ([ aue) (113)
0 JBy;p P Bya 0 JB P

which combined with would give us . In order to show this, we construct
a competitor p,j which agrees with p,j outside of By /5 X (0,1) and satisfies the upper
bound in . Then the minimality of p, j for the Benamou-Brenier problem gives the
result. Let 7 > 0 and we set A, := Byy \ By /2(1—r)- We choose

(P, ) =

K (LVSO) in B1/2(1—7’) X (07 1)
(1+s,Vo+q) in A x(0,1),

Where (s,q) € Q is the minimiser from Lemma with f replaced by f — f and

radius 1/2 rather than 1. By construction (p, j) is admissible for the Benamou-Brenier
formulation, as the flux out through 0By 5 is precisely the same as that of j for a.e.
and ¢, so that the net flux through B/, is zero and this retains its constant density =1
at t = 0,1 (since B; C E N F), then setting (5,7) as equal to (p, ) outside of By /s,
everything else is also preserved.

_ o\ 1/d+1
Now by Lemmaif (fol faBm(f - f)Q) < r (which is possible for some r € (0, 1)
as the former is controlled by |D and that fol Iz, %| j|? < 1) then we can choose

(s,q) € Q such that
1 1
2 < _A\2
L[ aese ] , 0D (4.14)

Now using that |s| < 3 we have

1 1 < 1 5 1 1 )
=|jI* = V| + T s Ve + 4
0 JBy, P 0 JByjsar o Ja, 1+s
1 1
<[ [ wePea] [ veP+laP
0 JBi/a1-r) 0 JA,

Then using this expression in the LHS of (4.13]) gives

1 1
1 -
// JJ\Z—/ IVSOIQS// IVeol? + |q|>.
0 JByp P Bio 0 JA,
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We now use the trace estimate (4.6) from Lemma (here f plays the role of f) as well
as (4.14) to give

! 1~ —2 ! —
[ osie-[ werse [ Par[ [ -7
0 JByj P Bijs OB 2 0 JOBys
1
L L
0 JOBys

Note we cannot now pass any limit » — 0 giving a contradiction, as we need to maintain
(fol faBl/g(f - ?)2)1/“1 < r. But we can choose r to be a large but linear multiple

of (fol faBl (f —?)2)1/d+1 < (fol faBl/Q f2)1/dJrl corresponding to the requirement for

the lemma’l This gives

1 1~2 , 1 ) d+2/d+1 1 1 )
[ oie=[ wers([ [ s(//u)
0 JBy,y P Bio 0 JOBys 0o JB P

by (4.9), and combining with that p,j are a minimiser of the Benamou-Brenier formu-
lation and agree with p, j away from the ball, we have

1 1
1. 1-
L[ osues[ [ e
0 JByp P 0 JBy P

which in turn gives (4.13).
[Step 5: Control on the Dirichlet energy./

d+2
d+1

Finally, we show the control on the energy of . We have

1
_ 1
/ IV@IQS/ |V<P|2,§/ |f|25/ / =il
By /2 Br OBRr 0 JB P

where we used the trace estimate in terms of the energy from Lemma followed by
(4.9). This completes the proof. O

4.2.2 Approximation of the Lagrangian displacement

We now pass to the Lagrangian framework. We will first need an L interior control on
the transport displacement in terms of the energy . This is somewhat reminiscent
of interior L* estimates for harmonic functions as in Lemma 4.3l There the main tool is
the mean value theorem, whereas here the control is a consequence of the monotonicity
of any quadratic optimal map. Using the monotonicity for L controls is established
global case in [5], here we prove a localised version as in [I5, Lem. 3.1].

"Here we use fol fB1 %|j|2 suitably small to justify such an r existing.
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Lemma 4.7. Let T be the minimiser of and assume E(T',1) < 1, then

2 T 1 1 2 e
sup [T —z| S (/ T — x| ) and sup [T —z| < (/ T — x| ) , (4.15)
Bl Bl

3/4 3/4
with the sup in the L™ sense. Consequently for Ty(x) = tT(x) + (1 —t)x, t € [0, 1],
T~ (Bis16) € Bijs;  Ti(Biss) € Bsjie and T, '(Byjs) C Bi. (4.16)

Proof. Let u(x) := T(x) — x denote the displacement. By monotonicity of T as the
quadratic optimiser, we have for a.e. x,y € By that

(u(@) —u(y)  (z —y) = (T(2) = Ty)) - (& —y) — (x—y) - (& —y) > ~|o —y*. (4.17)

Let y € By be s.t. the above holds for a.e. € By. If we can show

u<y>s</3 1/4(y)|u<x>|> ,

we will have established the result. Since we show a bound independent of E and F,
then by translating these it is sufficient to establish this just for y = 0. Furthermore, by
rotating F, F', we only need to show the bound for a single component of w. Thus it is

sufficient to prove
P
@(0) S ( / |u\2> .
By

Take y = 0 in (4.17)), then for a.e. x € By 4, we have
u(0) - & < u(z) o+ |z < fu(@)? + [z

For r < 1/8 we can integrate the above over B, (e;r) to obtain

2r2rd=1y(0) - e; < (/ |u]2) + Crdt?
By (re1)
which in turn gives (still for r» < 1/8)

1 9 a
ul(o)grd“/B |ul +r::m+r.
1/4

First-order optimisation in r on the RHS gives a minimiser
; 1 1
' =ad2(d+ 1)a2,
Which is admissable under our assumption £(7,1) < 1 since a < £(T,1). Plugging in

this r gives
1

a+2
u1<o>s</B rT—xP) ,
1/4
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giving half the estimate. For 7~! we can simply interchange the roles of E and F so
that we have (4.15)).

For the ball containments, the first two follow immediately from (4.15), as if the L
displacement is very small, then no point can go far beyond the ball so the image is
contained in any ball slightly bigger than it if £(7,1) is suitably small.

For the third containment Tt_l(Bl/g) C By, let x € E such that Ty(z) € Byj;. Then
since |13(0)| — 0 as £(T,1) — 0 by the control above, we have
IT2(0) — To(x)|* <|T(0)” + 2|T3(0) || T3 (x)| + | Te(x)
<o(1)+1/4

where o(1) — 0 as £(7,1) — 0. On the other hand,
| T:(0) = To()? =t*|T(x) = T(0)* + 2t(1 — )(T'(x) — T(0)) - & + (1 — )|/
>t () = T(0)]* + (1 — )|

> min(|T(z) ~ TO), |2]).

Combining the estimates, for £(T,1) < 1, we have either z or T'(z) in B%+O(1) C Byy.
2

In the first case we are done, in the second by the L* control we have x = T—(T(x)) €
T—l(B%_i_O(l) C Bsy4) C By which gives the final containment of 4.16 O

Remark 4.8. The key part of the above is the ball containments, they will allow us to
control the Eulerian energy on a smaller ball by the Lagrangian energy on a larger one.
In general, the above controls give estimates of type T'(B,) C T(B,4s) for any ¢ > 0, if
we E(T,1) <« 1.

These displacement controls now allow us to pass from the Eulerian framework to a
competitor to the displacement at the Lagrangian level, so that we can approximate the
displacement with a harmonic gradient superlinearly in terms of £(7,1). This corre-
sponds to [16, Prop. 4.4].

Proposition 4.9. Let T be the minimiser of and assume By C ENF. Then there

exists harmonic ¢ : Byj16 — R such that

/ ]T—x—Vgo|2+/ T — 2+ V|2 < E(T, 1) o (4.18)
By /16 B /16

and
[ vep e,
Bi/16
Proof. Let Ty(z) = tT'(z) + (1 — t)z, and define the measures
p(-1) = Tigpxp and  j(+,1) := Tiy (T = 1d)xp),
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which solve the Benamou-Brenier formulation || The velocity field v = % satisfies

v(Ty(x),t) = T(x) — x for a.e. x € E, so we have

1 1 1 1
L] osie= [ wkao= [ [ r-sps [ roap
0 JBys P 0 JBy 0 JT;71(By2) B

By Proposition on By, there exists ¢ : By/4 — R harmonic such that

1 1. 5 d+2 9
[ [ li-ovel se@uFt wa [ vep e, (4.19)
0 Bl/4 p Bl/4
To establish (4.18)) we first show
9 da+2
(T — 2) — Vol? S E(T, 1), (4.20)
Byys

By the triangle inequality, the inequality (a + b)? < 2a% + 2b%, followed by integrating
both sides over t € [0, 1],

1 1
/ rw—m—wﬁs// |<T—x>—vgaom2+// Vo — Voo Ty
Byys 0 JBys 0 JByys
=)+ )

We claim (1) < £(T, 1)1 and (II) < £(T,1)? which would give (4.20) since &(T,1)? <
d+2
E(T, 1)ﬁ as soon as £(T,1) < 1.

For (I), recalling that v = j—f; satisfies v(Ty(x),t) = T'(x) — x and again using the uniform
in t ball containments, we can rewrite the integrand as

1 1
] w@o-veorp= [ [ jo-vePds
0 JBys 0 JTi(Bys)

1
1 d
< / / Z|j = pVel? < E(T, 1)
0 31/4/)

For (II), using V¢ is Lipschitz with constant sup | D?¢| combined with Ti(By/g) C Bsjies
we have

1
(1) < sw (D% [ [ - af
B3/16 0 JBys

< / D%l / T — 2 < (T, 1)2
B4 Biys

where we used that |T; — z| < |T — z|, a general form of Lemma [4.3| that the L> norm
of harmonic functions on any interior ball is controlled by the Dirichlet energy and that
the energy itself is controlled by (T, 1) from (4.19).
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Making use of the above, we now show the control for 7! on B, /16 Which would complete
the proof of (4.18)). By The Triangle inequality and the L ball controls,

/) KTl—n»+Vﬂ2=/‘ (& —T) + Voo TP
B /16 T=1(B1/16)

S/ !(T—x)—wl2+/ Vo — Voo T < E(T, 1),
Bl/S B1/8

where the first term is precisely (4.20) and the second term is controlled as (II) above. [

4.3 Partial regularity for the optimal map

4.3.1 Local C'* behaviour: geometric control of £(T, R) in terms R

Here we establish the local regularity, as a consequence of what is referred to as an
epsilon regularity result, originally appearing to prove regularity for minimal surfaces.
Effectively what the result says is that if on some scale the map 7' is close to the identity
in the sense of £(T, R), then there exists a change of coordinates on a locally small scale
such that 7" is even closer to the identity. This corresponds to [16, Prop.4.5].

Proposition 4.10. Let T be the minimiser of . For every a € (0,1), there exists
0<0(d,a) < 1ande(d,«) > 0 such that for each R > 0 with B C ENF, if (T, R) < ¢,
there exists a symmetric matriz Q with det Q = 1, and a vector b € R? satisfying

Q-1 SETLR) and |y S R*E(T,R), (4.21)

such that map T(x) = Q(T(Qx) — b) has a geometrically smaller energy on a scale 0
smaller;

E(T,0R) < 0**E(T, R).

Note that Q and b depend on the specific map, but their controls in terms of the energy
are global.

Proof. If we can show the result for R = 1, for a general R we can re-scale F, F' and
T to the R = 1 case, which would correspond to a change of variables & = R~ 'z, a
redefinition T'(Z) = R™'T(RZ) and b = R~'b. Since this scaling preserves optimality
(by Brenier’s theorem and that the new map is simply the gradient of a suitably scaled
convex potential from the original), it is sufficient for us to prove only the case R = 1.

Let ¢ : By/16 — R be the harmonic function given by the Lagrangian competitor Propo-
sition We set b = Vip(0) and A = D?p(0) the Hessian. Then we choose Q := e~4/2
as the exponential of the matrix, see appendix. Since A is symmetric and Tr A = 0 as

 is harmonic, then @ is symmetric and det Q = 1. By the harmonic function controls
Lemma 4.3, we have

wﬁs/ Vo2 S E(T. 1),
Bi16
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and also

2 N~ 2 N~ Ly

Q-1 =Y A 1P <Y Al < |A] S E(T 1),
=0 i=1

so that our matrix and vector satisfy (4.21)).

Now turning towards our map 7'(x) := Q(T(Qz) —b), for any 6 > 0, if £(T,1) < 0% < 1

then |@—1d | < 6 which means Q(By) C By and also |Qy| = |Qy—y+y| < |Q—1d ||y|+|y|

so that |Qy|? < |y|?. Consequently, we have

o2 [f-af =02 [ QT -b)-Q lap
Q(By)

By

_ -2 N =202 -2 -2 2
— 0 /Q(BG)@((T b) — Q%) 50][ T~ (Q % +b)

Bae
Now applying the triangle inequality to the above,

024 |T —z)?
By

S0 (@ -a)- el ro?f QT -1-AaP 40 Voo b asf
Bay Bag Bag
=)+ (I)+ (LI1).
We have (I) < 0~(@+2g(T, 1)% by Proposition For (II) we have

02 @ —T-A)P S0 [ Q7 ~1a-aPpp
Bay Bsg

SIQ?—1d-AP = et —A-1d? S [D*p(0)* S E(T. )%

~

Finally for (IIT) we have

Bag

92][ Vo —b— Az|> <67 %sup [V — b — Az|?
Bae
=0 sup [Vp(z) = (Vep(0) = D(Vg)(0)z|*.
20

This is the error or the first order Taylor series of the vector field f = Vi, so by the
Lagrange form of the remainder this is equal to some second derivative of f inside Bag.
This is a third-order derivative term D3y, with a second-order power #? since we view
it at the Taylor series in f. Hence by Lemma [£.3]

][ Vo —b— A$|2 < 0~2 sup |D3c,0|]02]2 =62 sup \D3<p\ < 025(T, 1).
Bog Bag

20
Combining the three estimates gives, for £(7,1) < 1 and 6 < 1/2,
02 |1 — 22 <O~EDE(T, 1) T 4 (T, 1) + 92(T, 1)
B
’ a+2
< OHDE(T, 1) a1 + 02E(T 1).
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We now show a similar control for T~ (z) = Q'T~1(Q 'z +b). For £(T,1) < 6? <« 1,

62 rT-l—xF:e-?][ \Q-lT-l—@<m—b>|259-2][ T~ Q¥ — b
By Q 1By+b 20

By repeated application of the triangle inequality, we have

T —Q*z —b)| <|T' — (z— V)| + |2 — Ve — Q*(z — b)|
<IT™ — (@ — V)| + |z — Q% — Ax| + |V — Q*b — Az
T = (2 = V)| + |7 — Q% — Az| + |V — Az — b| + [b — QD]

so that

0—2][ 77! —2? < <9—2/ (T~ —z)+ w)ﬁ) +|1d—Q* — A|
By Bag

+ 6 2sup ‘Vgp - Q% — AJ}‘Q + 0_2}(Id —Qz)b‘2

Bag

= (I) + (IT) 4 (II1) + (IV).

d+2
As before (I) < 0@+ (T, 1)a+1 and (1) < §2£(T,1). For (II) we have

11d-Q* — A| = e+ A—1d| S |42 < |D%p(0)|" S E(T, 1),
and for (IV),
072|(1d —Q*)b|* < 072 D?p(0)P[V(0)2 < 072E(T, 1),
Overall, this gives
92][ 71— 22 < 9~H2E(T, 1)1 + 62E(T, 1),
By

Combining with the estimate for T', there exists a constant C'(d) > 0 for which

ET,0) =024 |[T—z?+|T'—z)?<C (a—d+25(T, )T 4 928(T, 1))
By
for £(T,1) < 6% < 1. Note that our calculations show that C is independent of any

of the data, it is just that the controls only hold for when the data is suitably small.

Finally, we now fix § < 1/2 such that C6? < %HQC“, which is possible since a < 1. Then
d

if £(T,1) < 6 suitably, we have CO~ (2 (T, 1)dﬁ < 26°2&(T,1) and in this case

E(T,0) < %92%@, 1)+ %92“5@, 1) = 0% &(T,1).

In other words, what we have shown is that there exists 0 < (d, @) < 1 and a threshold
e(d,a,0) = e(d, o) > 0 (corresponding to the requirement £(7T, 1) < #?) such that if

E(T,1) <e, then &(T,0) < 0*E(T,1),

which is precisely what we were trying to show. O
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We now prove the local regularity at a fixed point, [16, Prop. 4.6].

Proposition 4.11. Let T be the minimiser of , and assume that for some R > 0,
we have Bop C ENF. Then if £(T,2R) < 1 we have T € CY*(Bg) for any a € (0,1),
with the Hélder seminorm on Br controlled by

N|—=

Th,a SR E(T,2R)2.

Proof. We will show that T € C%’Hza (BR), thus establishing the result by Campanato’s
theorem, Theorem [2.10] This means comparing 1" to degree 1 polynomials; affine func-
tions. If £(T,2R) < 1, then for any z¢ € Bg,

£ = R_2][ T — |+ |T7! — 2> < 2772(T,2R) < 1.
Br(zo)

We will show that for r < % (we only need to check this, c.f. 1}

min % IT — (Az +b)|* < @€, (4.22)
Ab T B (o)
which would establish the result by Campanato’s theorem. By translating E and F
and that the new optimal map is simply the affine translation, we can assume w.l.o.g.
that o = 0. We apply the previous result Proposition to obtain a symmetric, unit
determinant matrix Q1 and a vector by such that T1(x) := Q1(T(Q1x) — by) satisfies

E(T1,0R) < 0**E(T, R),

where # < 1 is the constant given by the proposition. Given that 7" minimises the
transport between E and F', Brenier’s theorem gives that 77 minimises the transport
between the sets Ep := QflE and Fy := Q1(F — by), as Ty is the gradient of the same
convex potential as T under a suitable change of coordinates.

The conditions from the proposition that |Q—1Id | and R~!(b1| very small for £(T, R) < 1
are now used, to deduce that
Byr € E1 N F.

We now iterate Proposition 4.10] giving a sequence of symmetric matrices @, vectors
b, and (optimal) maps Ty, (z) = Qn(T(Qnx) — by) between sets E, := Q,'E, 1 and
F, := Qn(F,—1 — by), which satisfy

E(T,,0"R) < 62°"E(T, R), (4.23)

1Qn —Id > <0%*"E(T,R) and |b,|? < 02FU"R2E(T, R)

To rigorously justify this iteration, we must note two things. The first is that the
threshold for the energy ¢ is independent of any of the data, this holds since 6§ < 1 so
that £(T,,0"R) < £(T, R) and the original energy is below the threshold to reapply the
Proposition each time independently of n.

o7



The second thing we must justify is that each time the balls Bynp are indeed in E, N F,
for all n - that is, we do not need to make the original energy £(T, R) smaller once n gets
large to guarantee this, otherwise we could not iterate indefinitely. Note that the control
on |b,| means that it decays faster with n than 0™ does as the power of # here is greater
than 1 - so if the initial energy £(7', R) is small enough, all the following translations
will be on a scale much smaller than scaling the radius by a factor of 8. The control on
|Qr| does not have a decay factor as strong as 6", but since this quantity is itself a scale
factor of an operator rather than the displacement |b,|, this is not necessary, and so long
as £(T, R) < 0 initially, each @,, will be much closer to the identity than the required
factor of . Thus we have Bgng C E, N F,, for all n without needing to tweak £(T, R)
so long as it starts small enough. This justifies being able to iterate the Proposition
indefinitely.

We now set .
Ap = QnQn-1...Q1 and d, := Z QnQn-1...Qib;,
i=1
noting still that det A,, = 1 and also that T,,(x) = A,T(A}x) — d,,. We claim that
|A, —1d |* < 6**E(T, R). (4.24)
Proceeding inductively, if we had this control for n with some constant C,, > 0, then
Antt 1] [Qus1An — Aul + [ Ay —1d| < |Qui1 — 1d[[Au| + |4, — 1d|
<|@ni1 = Id|(1+ Cp)E(T, R) + Cr&(T, R)
< (014 C) + C) E(T, R),
so we would have the control for n+1 with Cy,41 = 92"‘(”“)(1 +Cy) + Cy,. In particular,
the term-to-term increase is geometrically vanishing to zero at rate 6, so that there exists

a control uniformly independent of n, giving (4.24). Specifically, this gives (for suitably
small initial energy £(T, R) < 1) that B%QkR C Aj(Bgrp). We then deduce that

: 1 ][ 2 1 —1 *\—1 —1 2
min — T — (Az +b)? < ][ T — (A7Y(AD) o+ A dy)|
A GORP s, ,, OB e " '

1 . ) )
_ (ekR)z]é IT(ALe) — (A e + A dy) 2
0k R

- el 4@

kR

(4.24) 1 ][ 9
S o M-
O R2]y,,,

= &(Ty, 0% R) < 60°°FE(T, R).

where we used that T(Ajz) = A, (T (x) + di).

o8



This establishes that distance from a polynomial on concentric circles related by a geo-
metric factor of # is uniformly controlled by the above power of # times the energy on
the largest circle. However, for the Campanato seminorm, we must take the sup overall
r, it is certainly not sufficient only to control the decay of the energy along one specific
subsequence of radii 8% R converging to zero, one can easily construct a candidate energy
for which this fails. We thus must control the energy uniformly on some annulus whose
radii are different by a geometric factor of at least #. Iterating down along any of these
gives the control for all r. For any r € [0R, R], we haveﬂ

1 R 1 1

The above combined with the decay control on geometric factor circles, gives (4.22)), and
on account of Campanato’s theorem, the proof is complete. O

4.3.2 T is a C'* diffeomorphism on an open set of full measure

We now have all the tools we need to establish the partial regularity result. The previous
results have built up to giving local regularity in a neighbourhood of 0 when By C ENF
when £ < 1 so that T is close to being the identity. We now make use of a change of
variables at a.e. point in E, which preserves optimality of the map and turns the new
map into having this fixed point. Then the differentiability of Alexandrov’s theorem
gives £ — 0, establishing the regularity on an open neighbourhood of each point. This
is [16, Thrm. 4.7].

Theorem 4.12. Let E and F be two bounded open sets with |E| = |F|, and let T be the
minimiser of the quadratic transport . There exist open sets E' C E and F' C F of
full measure such that T is a CY* diffeomorphism between E' and F' for any a € (0,1).

Proof. By Brenier’s theorem T is a.e. the gradient of a convex function, hence by
the Alexandrov theorem (Theorem 4.2) we have two sets of full measure £y C E and
Fy C F such that T and T~! are Fréchet differentiable (minus negligible sets), so that
for xg,yo € E1 x F, there exit symmetric matrices A, B s.t. for a.e. (z,y) € E x F,

T(z) = T(wo)+ Alw—wo)+o(le—zol) and T~ (y) = T~ (yo)+ B(y—yo)+o(ly—ol).

(4.25)
On account of Remark [L17 we can assume that T and 7! are inverses of one another
everywhere on E; X Fj. Then by the Jacobian equation (|1]), since both densities are
constant = 1, we have det A = det B = 1, and we also have A = B~!. We now set
E' = E;NT Y(F) and F' = T(E') = F; N T(Ey). Since both measures are absolutely
continuous, T sends measure zero sets to measure zero sets so consequently E’ and F’
are of full measure, that is |E\ E'| = |F'\ F'| = 0. We now prove the sets E’ and F’ are
open and T is a C1® diffeomorphism between them.

8This is reminiscent of the similar control we established for Proposition
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Fix some 29 € E’ and set yp = T'(zo) € F'. By the differentiability (4.25]), we have

.1 1 _ _
lim — T —yo — A(z — z0)|> + T~ — 20— A7 (y —yo)|* = 0. (4.26)

B0 B2/ B (2) R ) B (y0)

We make a change of variables on both domain and codomain z = A~/2% + z and
y = AY2§ + yo, and define the new map

T(2) := AY>(T(A™Y%% + 29) — yo) with inverse T_l(gj) = AYV2(T7 YAV + yo) — o).

This map transports between the sets F := AY2(E — ) and F := A~Y2(F — y), and
by construction has a fixed point 7'(0) = 0. By Breiner’s theorem 7" = Vu for some
convex u, then

T(3) = A™V2(Vu(AY?3 + 20) — yo) = V (u(AY22 + 20) — yo - 7),

where V is the gradient in new coordinates, so T is the gradient of a convex function
also (as convexity is preserved under affine changes of coordinates in the domain, and by
adding an affine function to the codomain). Noting that the Jacobians are | det AY/2| =
| det AY/2| = 1, this change of variables transforms into

1 A 1 A
lim — 4 |AY¥(T -2 2+][ ATV gy =o.
i g, 1AYAE =8P g f A7 )
Using that A'/2, A=1/2 are invertible by their determinant and thus positive definite (not
just semi-definite) by convexity we have a smallest positive eigenvalue for each and by
bounding in terms of these we ascertain

1

=], T —g)* =0.
R

.1 s 9
}lzlinmﬁ BR\T—:U\ +
Now for small enough R, Br(z9) C E and Br(yo) C F such that B C ENE. Thus we
invoke Proposition El to give both T and 7! as C* in a neighbourhood U of zero.
Returning to the original map, we have T is a C1® diffeomorphism in a nbhd. U of x
to T(U) a nbhd. of T'(zg). We thus have U x T(U) C E' x F’, giving E' and F’ as open
sets and on account of Remark T is a CY diffeomorphism between E' and F’. [

Remark 4.13. As a consequence of the Evans-Krylov theorem, letting T = Vu for
u convex by Brenier’s theorem, we have u as C*® and hence a classical solution to
the Monge-Ampere equation det D?>u = Yz so that we actually get T € C> on E'.
Unfortunately, we do not have room to discuss this here.
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A Notation

indicator of set A

Lebesgue measure of a set

push forward measure Ty u(A) := p(T~1(A))

probability measures on X, probability measures on X

probability measures with finite second moments

R? valued vector measures

prob. measures v € P(X x Y) with marginals P,#y = p, Py#y =v

the 2-Wasserstein distance

lower /upper semi-continuous

Numbers: sublinearly much smaller than. Measures: absolutely continuous
with respect to

globally controlled by (constant depending only on d/ Holder exponent)
for measures with p < v, the Radon-Nikodym derivative

average integral, ﬁ N

continuous with compact support

continuous and bounded

k times differentiable functions which kth order derivatives a-Holder
Sobolev spaces of k times weak differentiable functions with 2 or p-
summable derivatives

polynomials of degree k or less

compactly contained

gradient in the space variables, not including any time variables

for a square matrix A, the adjoint/transpose

standard little “0” notation - something which decays to zero when divided

by f(x).
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B Appendix

Definition B.1. A collection of probability measures Q@ C P(X) are called tight if for
each € > 0 there exits a compact K. € X such that (X \ K¢) < e for all p € Q, so that
up to an arbitrarily small amount of mass, the support of all the measures lie inside the
same compact set.

Theorem B.2 (Prokhorov’s Theorem). Let (X,d) be a Polish space, then a collection
of measures is tight if and only if they are relatively compact w.r.t. the narrow topology.

We use an infinite dimensional saddle problem result from [7].

Theorem B.3 (min-max). Let X,Y be topological vector spaces over R and let A C X
and B C Y be closed convex sets. Let ' : A x B — R be a functional that is convex
and l.s.c. in the first variable, and concave and u.s.c. in the second. Suppose that there
exists y € B and A € R such that {x € A; F(x,y) < A} is non-empty and compact. Then
we can allow the inf — sup exchange

sup inf F(x,y) = inf sup F(z,y).
sap 1of, Fley) = It sup Flo )

Theorem B.4 (Poincaré-Wirtinger inequality). Let Q@ C R™ be a bounded domain with
DiamQ < [. There exists a constant C(n,p) > 0 such that for u € WP(Q) and

ug = fou,
/ |u — uqPdz < Clp/ | Du|Pdzx.
Q Q

Definition B.5. For a square matriz A, the matriz exponential is defined as

o0
1
et = —,A”
= n!

Some properties we use:

A

o If A is symmetric, then e is also symmetric.

o IfTrA=0 then dete? =1
o If A is invertible, (e*)* = eF4 for any k € Z.

Lemma B.6. The function det(-)% : R4 5 R is concave.
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