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Abstract
The notion of a normal family of complex-valued functions was ini-
tially introduced by Paul Montel in 1907. Over the past century,
normal families have become a pivotal concept in the field of com-
plex analysis and are still an active area of research today. In this
report we will study normal families of continuous and holomor-
phic functions, using our results to present a proof of the Riemann
mapping theorem. We then generalise to normal families of mero-
morphic functions, studying various powerful conditions for normal-
ity. Finally, as a consequence of a particular normality criterion, we
present a proof of the big Picard theorem: If a holomorphic func-
tion f(z) has an isolated essential singularity at z0, then on any
punctured neighbourhood around z0, f(z) attains every value in C
infinitely often, with possibly one exception.
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Preliminaries

Notation

N the natural numbers
R the real numbers
C the complex numbers
C∞ the extended complex numbers C ∪ {∞}
D the open unit disc {z ∈ C : |z| < 1}
Ω a domain (connected open set) contained in C

ℜ(z) the real part x of a complex number z = x+ iy
ℑ(z) the imaginary part y of a complex number z = x+ iy
⊂ a (not necessarily proper) subset

A the closure of the set A
Int(A) the interior of the set A, the largest open subset of A
B(a, r) an open ball {z ∈ C : |z − a| < r} in euclidean metric

B(a, r) a closed ball {z ∈ C : |z − a| ≤ r} in euclidean metric
Bd(y, r) an open ball in a metric space (Y, d), {y ∈ Y : d(y, y1) < r, y1 ∈ Y }
Bd(y, r) a closed ball in the metric space (Y, d), {y ∈ Y : d(y, y1) ≤ r, y1 ∈ Y }

∼= homeomorphism between two topological spaces
≡ identically equal to, equal to everywhere on the domain
P |D the map P with its domain restricted to D

All other relevant notation will be defined as it appears in the text.

Prerequisites

Readers should be familiar with notions of compactness, sequential compactness, relative
compactness and completeness in metric spaces and topological spaces. Readers should be
familiar with notions of continuity and convergence of sequences of points and functions.
Of particular importance is compact convergence of a sequence of functions, and the fact
that this preserves continuity. Readers should be familiar with standard results seen in a first
course in complex analysis, including the construction of the Riemann sphere by stereographic
projection. Explanations of these concepts and results can be found in textbooks such as
[1, 7, 32].
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1 Introduction

In the late 19th and early 20th century, the study of what would become known as compactness
was in full force. One of the key properties under investigation was requiring every sequence
xn ∈ X to have a convergent subsequence xnj → x - this is the Bolzano-Weierstrass property.
If we ask further that the limit point x is in X, this is what modern analysis refers to as
sequential compactness. Heuristically, if a set is sequentially compact then it is somehow
small enough that it is not possible to have an infinite sequence inside it which does not have
some accumulation point somewhere.

The Bolzano-Weierstrass theorem tells us that for subsets X ⊂ Rn or Cn, X is sequentially
compact if and only if it is both closed and bounded. A sketch proof of this on the interval
[0, 1] ⊂ R is as follows. If we have an infinite sequence of points in [0, 1], bisecting the interval
there must be infinitely many terms in either [0, 1/2] or [1/2, 1]. Choosing this and bisecting
again, we have that at least one of the two intervals must contain infinitely many terms. We
can repeat iteratively, with the length of the intervals 2−k after the kth iteration, approaching
zero. Taking one point in X from each interval gives a convergent subsequence.

It is easy to see how this argument generalises to Rn. For an infinite closed and bounded
sequence in Rn, by boundedness find some hypercube which contains X completely. Parti-
tioning this set into 2n equal sub-hypercubes we can perform a very similar process to extract
a subsequence. That sequential compactness implies closure and boundedness is easy to see.
If we did not have closure then we would expose ourselves to the possibility that the limit
function of this iteration was not in X. Furthermore, if we did not have boundedness then our
bisection method would fall apart since the length is unbounded. For example, the sequence
xn = n in R clearly has no convergent subsequence.

Figure 1.1: Bolzano-Weierstrass for an infinite set of points inside the unit cube in R3.

In 1904, French mathematician René Maurice Fréchet coined the term compactness for what
is taken to be the modern definition - that X is compact if for every open covering of X,
we can choose a finite collection of these to still cover X [10]. Fréchet made many major
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contributions to topology, including being the first to define the notion of a metric space.
The Heine-Borel theorem tells us that a subset X ⊂ Rn or Cn is compact if and only if
it is closed and bounded. We see that this aligns with the Bolzano-Weierstrass theorem,
telling us compactness and sequential compactness are equivalent here. Although this is
not true for general topological spaces, in a metric space, these two notions are equivalent.
These classifications are powerful, but do not extend to infinite dimensional spaces. This is
illustrated in the below example.

Example 1.1. Consider the space ℓp(R) for 1 < p < ∞, the space of real-valued sequences,
with the usual ℓp-norm. Let B be the closed unit ball

B = {x : ∥x∥p ≤ 1} ⊂ ℓp(R).

Clearly, B is closed, as any convergent sequence xn ∈ B would also have its norm converging
with each value ∥xn∥p ≤ 1 so the limit value must also satisfy this. By definition, it is also
bounded. But the sequence {xi} ⊂ B given by

x1 = (1, 0, 0, 0, ...)

x2 = (0, 1, 0, 0, ...)

x3 = (0, 0, 1, 0, ...)

xn = (0, ..., 0, 1, 0, ...)

has no convergent subsequence. To see this, observe that for n ̸= m,

∥xn − xm∥p = (|0− 0|p + ....+ |1− 0|p + ....|0− 1|p + ...)1/p = 21/p ≥ 1 > 0.

No matter how large m and n are, we will never find a subsequence which converges, as the
pairwise norms will never approach zero so the sequence is not Cauchy. Thus B ⊂ ℓp(R) is
closed and bounded, but not sequentially compact.

So what went wrong? The problem was, in essence, that the space ℓp(R) was ”too big”. The
infinite-dimensional size meant that in this case, closed and bounded subsets were too large
that we could not force an accumulation point in every sequence.

This poses a serious problem in understanding when subsets of spaces of functions have this
”closeness” Bolzano-Weierstrass property, as usually, function spaces are infinite dimensional,
so any subset of them is likely to be too. Clearly being closed and bounded are necessary
conditions for compactness, but what more must we ask in order to have an equivalent con-
dition?

In 1895 this question was rigorously answered for subsets of the space of continuous functions,
by the Italian mathematician Cesare Arzelà [3]. His work built on that of Giulio Ascoli’s
weaker proof of a sufficient condition for compactness of a collection of functions in 1883-84
[4]. We will see this in Chapter 2.

When we consider convergence properties, it is useful to begin thinking of functions as points
in a space, rather than as mappings. To distinguish between these cases, the convention is to
use the term family, when referencing a set of functions. Beyond this convention, there is no
inherent difference in structure between a family and a set. We will usually consider a family
of functions sharing a common domain Ω ⊂ C.
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In the most general case in this report, we are interested in families of continuous functions
and want to know when they are compact. In fact, we disregard the necessity of closure,
as it is usually easy to see if this is the case. We are more concerned with if a convergent
subsequence always exists, rather than if the limit of this subsequence is inside the family
- this is the core property that tells us if the functions are ”close together”. In this way,
we are more interested in studying families of functions which have the Bolzano-Weierstrass
property. These are relatively compact families of functions - families with compact closure.

Implicit in all of this discussion is the mode of convergence of the functions, or equivalently,
the choice of metric/topology on the space of functions. Restricting ourselves to uniform
convergence limits the usefulness of results as they only apply to a small class of functions.
Asking only pointwise convergence allows us to say little about the structure of any limit
functions since it does not preserve continuity. The mode of convergence we will use is compact
convergence - uniform convergence on all compact subsets of the domain. The topology this
convergence induces is called the compact-open topology. Compact convergence is equivalent
to local uniform continuity for all domains Ω ⊂ C, as can be seen by a simple Heine-Borel open
covering compactness argument. It follows that compact convergence preserves continuity,
which is a very useful property. We are now ready to define the eponymous notion of this
report, a normal family of functions.

Definition 1.2. A family of continuous functions F with common domain Ω is a normal
family if every sequence of functions {fn} ⊂ F has a subsequence fnk

which converges uni-
formly on every compact subset X ⊂ Ω to some fnk

→ f . We do not require that the limit
function of this subsequence satisfies membership f ∈ F .

The functions in a normal family are clustered together enough that we have this Bolzano-
Weierstrass property of always having an accumulation function in any sequence in F . The
study of normal families of complex-valued functions began in 1907, with Paul Montel giving
an equivalent condition for normal families of holomorphic functions [21]. The term ”normal
family” was first used by Montel in a subsequent paper in 1911 [22].

Knowing when a family of functions is normal turns out to be very useful, as we will see in
two main applications. In Chapter 4 we use the fact that a certain family is normal to aid us
in proving a powerful result about the existence of biholomorphic mappings between certain
domains - this is the Riemann mapping theorem. After developing our theory further, in
Chapter 7 we see a further application of the theory of normal families, aiding us in proving
one of the most celebrated results in complex analysis - the big Picard theorem.
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2 Continuous Normal Families

In this first chapter, we discuss fundamental concepts regarding families of continuous func-
tions. These concepts lay the bedrock for future chapters. We will be following and elucidating
in more depth results predominantly from [1, 7, 29, 32], although this subject matter is seen
in many other textbooks.

2.1 The space of continuous functions

We begin by studying families of continuous functions from subsets of the complex numbers to
a general metric space. In this report, (Ω, | · |R2) will always be used to represent the domain
of our functions, where Ω is an open subset of C or R, and | · |R2 is the Euclidean metric. In
this chapter, the complete metric space (Y, d) will represent the codomain of our functions.
We define C(Ω, Y ) as the set of all continuous functions from Ω to Y :

C(Ω, Y ) := {f : (Ω, | · |R2) → (Y, d) | f continuous} .

In the introduction, we defined the notion of a normal family, thinking of it as a relatively
compact subset of C(Ω, Y ), with respect to the topology induced by compact convergence, the
compact-open topology. However, we did not establish that this topology aligns with some
metric on C(Ω, Y ). Metric spaces have lots of useful properties so we would like this to be
the case. Crucially, what we are looking for is not the same as the difference between the
values functions take, this is already given by d(y1, y2), the metric on Y . We are after a more
general notion of the distance between two functions in C(Ω, Y ) for which convergence in this
metric is equivalent to uniform convergence on compact subsets X ⊂ Ω.

It is not trivially the case that such a metric would exist, for example, there is no metric that
aligns with the topology of pointwise convergence [9]. To prove this is challenging but it is
easy to see that this would not give us a complete metric space since we know that pointwise
convergence doesn’t necessarily preserve continuity.

Our first step towards a metric inducing the compact-open topology is to reduce the infinitude
of compact sets on which we must have convergence down to a countable collection.

Proposition 2.1. [7] Let Ω ⊂ C be open. There exists a sequence of compact subsets Xk ⊂ Ω
with k ∈ N, such that Ω = ∪k≥1Xk. We can further choose the sets such that

(a) Xk are increasing, such that Xk ⊂ Int(Xk+1) for all k ∈ N.
(b) Any compact set X ⊂ Ω is contained in Xk for some k ∈ N.

Such a sequence is called an exhaustion of Ω.

Proof. We know by Heine-Borel that any closed and bounded subset of C is compact, so we
construct an increasing sequence of closed and bounded sets with limit Ω. Define Xk by

Xk := {z : |z| ≤ k} ∩ {z : |z − w| ≥ 1/k for all w ∈ C \ Ω}.

Each Xk is bounded by k and closed, as it is the intersection of two closed sets. Furthermore,
z ∈ Xk implies

|z| ≤ k < k + 1 and |z − w| ≥ 1

k
>

1

k + 1
for all w ∈ C \ Ω,
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so the sequence is increasing. If z ∈ Ω then for suitably large k we have |z| ≤ k. By openness,
we can find some B(z, δ) ⊂ Ω. Then for all w ∈ C \ Ω, |z − w| ≥ δ and so for suitably large
k we have |z − w| ≥ 1/k for all w ∈ C \ Ω. Thus, for suitably large k we have z ∈ Xk, giving
Ω ⊂ ∪k≥1Xk. If z ∈ C \ Ω then with w = z we have |w − z| = 0 for some w ∈ C \ Ω and so z
is contained in no Xk and thus not in the limit. It follows that Ω = ∪k≥1Xk.

For arbitrary X ⊂ Ω compact, the open sets {Int(Xk)}∞k=1 form an open cover of X and thus
we have a finite subcover {Int(Xki)}ni=1. Then X ⊂ Int(Xkn) due to the increasing nature of
the sets, so X is contained in some Xk as required.

Equipped with such an exhaustion, we now construct a metric for the space of functions
C(Ω, Y ). Let Xk be an exhaustion of Ω. Observe that fn → f uniformly on compact subsets
on Ω if and only if fn → f uniformly on all Xk, since every X ⊂ Ω compact is in some Xk.

Requiring fn → f uniformly on Xk is the same as asking that the supremum value of
d(fn(z), f(z)) over the entire z ∈ Xk can be made arbitrarily small, such that the quan-
tity

sup
z∈Xk

d(fn(z), f(z)) → 0.

Since we want a sequence in our metric to converge if and only if we have compact convergence,
a sensible choice would be to consider a sum of all the above suprema. Then, if there was
some compact X ⊂ Ω on which fn did not converge uniformly to f , this X would be in some
Xk and the suprema for this set would not go to 0, so neither would the sum. However, we
could easily encounter a case where each expression converged to zero while the sum diverged.
To force the sum to 0 in this case we make some modifications. Our first is to replace the
metric d with a bounded metric, with help from [16].

Lemma 2.2. Let (Y, d) be a metric space. Then the quantity δ(y1, y2) is a metric on Y ,
defined by

δ(y1, y2) :=
d(y1, y2)

1 + d(y1, y2)
.

Furthermore, for any sequence yn ∈ Y we have that δ(yn, y) → 0 if and only if d(yn, y) → 0.

Proof. Positivity and symmetry of the metric are trivially inherited from d. For the triangle
inequality, we note that the function

f(t) =
t

1 + t
f ′(t) =

1

(1 + t)2

is continuous and has positive derivative for t ≥ 0, so f(t) is strictly increasing here. Thus

δ(y1, y2) = f(d(y1, y2)) ≤f(d(y1, y3) + d(y2, y3))

=
d(y1, y3)

1 + d(y1, y3) + d(y2, y3)
+

d(y2, y3)

1 + d(y1, y3) + d(y2, y3)

≤ d(y1, y3)

1 + d(y1, y3)
+

d(y2, y3)

1 + d(y2, y3)

=δ(y1, y3) + δ(y2, y3).

Where we made use of the triangle inequality for d in the first line. This establishes δ(y1, y2)
as a metric on Y . The limit property is easy to see. We first assume d(yn, y) → 0, and note
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this is an upper bound for δ(yn, y) since the denominator of δ(yn, y) is greater than or equal
to 1.

0 ≤ δ(yn, y) ≤
d(yn, y)

1 + d(yn, y)
≤ d(yn, y) → 0

so δ(yn, y) → 0 by squeezing. Now assume δ(yn, y) → 0, thus there exists some N ∈ N such
that for all n ≥ N we have δ(yn, y) < 1/2. By rearranging the definition for δ, we obtain

0 ≤ d(yn, y) =
δ(yn, y)

1− δ(yn, y)
≤ δ(yn, y)

1− 1/2
= 2δ(yn, y) → 0.

Thus δ(yn, y) → 0 if and only if d(yn, y) → 0 as required.

Effectively what we have shown here is that these two metrics are equivalent, inducing the
same topology on Y . We discuss this notion in more detail in Chapter 5. The advantage of
the metric δ is that it is bounded: 0 ≤ δ(y1, y2) ≤ 1. Thus an infinite sum of these quantities
is much easier to make converge. We define

∆k(f, g) := sup
z∈Xk

δ(f(z), g(z)) = sup
z∈Xk

d(f(z), g(z))

1 + d(f(z), g(z))
.

Now we define our metric on C(Ω, Y ) as a sum of these, with a geometric factor 2−k to force
the convergence.

ρ(f, g) :=
∞∑
k=1

2−k∆k(f, g); f, g ∈ C(Ω, Y ).

Theorem 2.3. The set C(Ω, Y ) equipped with the metric ρ(f, g) is a complete metric space,
and convergence in this metric is equivalent to uniform convergence on all compact X ⊂ Ω.

Proof. Since ρ(f, g) is a sum of suprema of metrics then clearly ρ(f, g) ≥ 0. If ρ(f, g) = 0
then f(z) = g(z) on every compact X ⊂ Ω. Since every z ∈ Ω is in some compact set - for
example, the singular {z} - then f(z) = g(z) on Ω as required. Symmetry of the metric is
trivially inherited from d by construction. The triangle inequality is also inherited from d as
follows. Let f, g, h ∈ C(Ω, Y ) and fix some k, then

∆k(f, h) + ∆k(g, h) = sup
z∈Xk

δ(f(z), h(z)) + sup
z∈Xk

δ(g(z), h(z))

≥ sup
z∈Xk

(δ(f(z), h(z)) + δ(g(z), h(z)))

≥ sup
z∈Xk

δ(f(z), g(z)) = ∆k(f, g).

Since this is true for all k ∈ N then considering the full series we have the triangle inequality:

ρ(f, h) + ρ(g, h) =

∞∑
k=1

2−k(∆k(f, h) + ∆k(g, h)) ≥
∞∑
k=1

2−k∆k(f, g) = ρ(f, g).

This establishes ρ as a metric on C(Ω, Y ).

To confirm this metric aligns with uniform convergence on compact subsets, observe that
fn → f compactly on Ω if and only if each ∆k(fn, f) → 0 as n → ∞ for each fixed k ∈ N.
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For each fixed n, the sum for ρ(fn, f) is dominated by the geometric series since the metric δ
is bounded by 1:

ρ(fn, f) =

∞∑
k=1

2−k∆k(f, g) ≤
∞∑
k=1

2−k = 1.

By the dominated convergence theorem it follows that

lim
n→∞

ρ(fn, f) = lim
n→∞

∞∑
k=1

2−k∆k(fn, f) =

∞∑
k=1

2−k lim
n→∞

∆k(fn, f)

and thus since ∆k(fn, f) ≥ 0 for all n, k ∈ N, we have

lim
n→∞

ρ(fn, f) ⇐⇒ ∆k(fn, f) → 0 for all n ∈ N for each fixed k.

This gives equivalence of convergence in ρ to compact convergence. For completeness, note
that compact convergence preserves continuity, so any Cauchy sequence of continuous func-
tions will have a limit function that is also continuous.

Theorem 2.4. A family F ⊂ C(Ω, Y ) is a normal family if and only if its closure with respect
to ρ is compact.

Proof. We first show that F normal implies F is normal. Assume F is normal and let fn ∈ F
and fix ϵ > 0. By nature of the closure1, we can find functions gn ∈ F such that ρ(gn, fn) < 1/n
for all n ∈ N. Since F is normal we have a convergent subsequence gnk

→ g ∈ F , so there
exists N ∈ N such that ρ(gnk

, g) < ϵ/2 for all nk ≥ N . Now by the triangle inequality, for
nk ≥ max{N, 2/ϵ}

ρ(fnk
, g) ≤ ρ(gnk

, fnk
) + ρ(gnk

, g) < ϵ/2 + ϵ/2 = ϵ,

and so fnk
→ g. Thus every sequence in F has a convergent subsequence so F is normal.

Since F ⊂ F , the set of all sequences in F is contained in that of F , so F normal clearly
implies F is normal. So F is normal if and only if its closure F is.

If F is normal, every sequence has a convergent subsequence with the limit in F by closure
and completeness of C(Ω, Y ). But this is the definition for sequential compactness, so since
we are in a metric space F compact. Thus we are done, as we have shown

F normal ⇐⇒ F normal ⇐⇒ F compact.

This confirms clearly what the notion of a normal family intuitively is, a subset of the space of
continuous functions which is relatively compact in the compact-open topology. As we saw in
the above proof, it is trivially the case that any subfamily of a normal family will be normal,
just as subsets of relatively compact sets are themselves relatively compact.

1The closure is F and its limit points so each fn is in F or arbitrarily close to a function in F .
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2.2 Equicontinuous families of functions

In pursuit of an equivalence condition for compactness in the space of continuous functions, we
must first define the notion of equicontinuity. This will be a crucial notion in the condition for
normality presented in the next section. Equicontinuity is a stronger form of continuity across
the entire family. In the same way as uniform continuity demands that for each ϵ > 0, we can
find a δ > 0 which gives continuity at all points in the domain, a family is equicontinuous at
a point in the domain if we can find a δ which gives continuity at that point for all functions
in the family.

Definition 2.5. A family F ⊂ C(Ω, Y ) is equicontinuous at a point z0 ∈ Ω if for all ϵ > 0 there
exists δ > 0 such that for all f ∈ F and z ∈ Ω with |z − z0| < δ, we have d(f(z), f(z0)) < ϵ.
A family F is equicontinuous over a set X ⊂ Ω if for all ϵ > 0, there exists a δ > 0 such that
for all f ∈ F and all z1, z2 ∈ X we have d(f(z1), f(z2)) < ϵ.

The subtleness of the definition must be carefully observed here. Being equicontinuous over a
set is not the same as being equicontinuous at each point in the set. It is instead a notion of
being uniformly continuous with the same δ working for every function also. Equicontinuity
is illustrated in the following examples.

Example 2.6. Consider the family of continuous functions F ⊂ C(C,C) given by

F = {f(z) = z2 + n : n ∈ N}.

Fixing ϵ > 0 we see that F is equicontinuous at each z0 ∈ C by choosing

δ = min

{
1,

ϵ

1 + 2|z0|

}
.

Then for |z − z0| < δ, observe that for all f ∈ F , we have

|f(z)− f(z0)| = |z2 + n− (z20 + n)| = |z + z0||z − z0|
≤ (|z0|+ |z|)|z − z0|
< (|z0|+ |z0|+ δ)|z − z0|
≤ (2|z0|+ 1)δ ≤ ϵ,

giving equicontinuity at an arbitrary z0 ∈ C. But F is not equicontinuous over C. Fix ϵ = 1
and assume there exists such a δ > 0 which works for all f ∈ F and all z ∈ C. The point
z + δ/2 is within δ of z so for all z ∈ C we should have

|f(z)− f(z + δ/2)| = |z2 + n− (z + δ/2)2 − n| = |δ2/4 + zδ| < 1.

Choosing z suitably large would clearly make this modulus greater than 1 so this is a con-
tradiction, and it follows that no such δ exists. Here F failed to be equicontinuous over C
since each function was not uniformly continuous over C. Noting that continuous functions
are uniformly continuous on compact sets, we can establish F is equicontinuous over any
compact X ⊂ C however. Let X ⊂ C be compact, then X is bounded, say by |z| ≤ M . We
know that F is equicontinuous at each point in z ∈ X with the δ above. Thus taking

δ = min

{
1,

ϵ

1 + 2M

}
gives F equicontinuous at any point z ∈ X, so F is equicontinuous over every compact X ⊂ C.
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Example 2.7. Consider the family of continuous functions F ⊂ C((0, 1),R) given by

F = {f(x) = nx : n ∈ N}.

By choosing δ = ϵ/n it is clear each function in F is uniformly continuous on (0, 1). However,
F is not equicontinuous at any point in (0, 1). Fix ϵ = 1 and assume without loss of generality
that there is a δ < 1/2 which works for some x0 ∈ (0, 1). Then for all f ∈ F ,

|f(x)− f(x0)| = n|x− x0| < 1 whenever |x− x0| < δ.

But for n > 2/δ this fails for x = x0 ± δ/2, whichever or both are in (0, 1). So in this case
it is not the uniformity across the interval that fails, but the equicontinuity altogether, the
uniformity across the functions.

We can see that equicontinuity is a property of closeness of a family, since requiring that all
functions can use the same ϵ for continuity requires that at each point, every function is of
similar shape/derivative. Then, a small change δ in the inputs of the functions corresponds
to a change in the outputs which is bounded across all functions. In essence, this is why
Example 2.7 failed, as the functions could become infinitely steep on (0, 1) as n is made large.

In Example 2.6, we saw that F was pointwise equicontinuous, and on a compact set X, we
could choose a minimum of all the deltas at each point z0 ∈ X such that F was in fact
equicontinuous over X. This was not a coincidence and is true in the general case.

Proposition 2.8. If a family F ⊂ C(Ω, Y ) is equicontinuous at each point z ∈ X for a
compact set X ⊂ Ω, then F is equicontinuous over X.

Proof. Fix ϵ > 0. For each z ∈ X, F is equicontinuous so there exists δz > 0 for which
|f(z)− f(w)| < ϵ whenever |z − w| < δz and w ∈ X and f ∈ F . The set

O = {B(z, δz) | z ∈ X}

forms an open covering of X, since each z is at least in its own ball. By compactness, there
exists a finite subcovering

X ⊂
n⋃

i=1

B(zi, δzi)

for some finite sets {zi} ⊂ X and {δzi}. We now set

δ = min
1≤i≤n

{δzi}.

Then any z ∈ X is contained in some B(zi, δzi), so if |z− zi| < δ ≤ δzi then by equicontinuity
at zi, |f(z)−f(zi)| < ϵ for all f ∈ F . Since this δ works for all z ∈ X, then F is equicontinuous
over X as required.

2.3 The Arzelà–Ascoli theorem

We now prove the powerful Arzelà–Ascoli theorem, which makes use of equicontinuity to give
us our first condition for normality, and is a fundamental building block towards the proof of
many of our later results. Here, we follow proof from [1, 7, 34].
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Theorem 2.9 (The Arzelà–Ascoli Theorem). A family F ⊂ C(Ω, Y ) is normal if and only if
both of the following are true:

(i) F is equicontinuous over every compact X ⊂ Ω.
(ii) The sets {f(z0) : f ∈ F} are relatively compact in Y for each z0 ∈ Ω.

Proof. Assume F is normal. We will first show F is equicontinuous at each z0 ∈ Ω. We argue
by contradiction, assuming F is not equicontinuous at z0. If for each ϵ > 0, there were a δ
which worked for equicontinuity at z0 for all but finitely many functions {fi} ⊂ F , then by
continuity of each function we could find a δi giving continuity at z0. Taking a minimum of
all the δi and the original δ would give us a δ which would suffice for equicontinuity at z0. So,
since we are assuming no equicontinuity, there must exist some ϵ > 0 such that for all δ > 0,
there is an infinite sequence of functions {fn} ⊂ F such that for all n ∈ N,

d(fn(z0), fn(z)) ≥ ϵ; for some z ∈ Ω with |z0 − z| < δ. (2.1)

We fix this ϵ from above, and now find by normality a subsequence of this sequence which
converges, using this to force some d(fn(z0), fn(z)) to be less than ϵ. This in turn contradicts
our choice that no fn satisfies this, that lack of equicontinuity allowed us to make. By
normality, we have a convergent subsequence fnk

→ f ∈ C(Ω, Y ). By the triangle inequality,

d(fnk
(z0), fnk

(z)) ≤ d(fnk
(z0), f(z0)) + d(f(z0), f(z)) + d(f(z), fnk

(z)).

By continuity of f and twice by the convergence of fnk
there exists δ > 0 (simply by taking

the minimum of the two deltas required for each) and N ∈ N such that for |z − z0| < δ and
nk ≥ N , we have

d(fnk
(z0), f(z0)) < ϵ/3, d(f(z0), f(z)) < ϵ/3, d(f(z), fnk

(z)) < ϵ/3.

Thus for |z − z0| < δ and nk ≥ N we have

d(fnk
(z0), fnk

(z)) < ϵ.

This is a contradiction to (2.1). Therefore F is equicontinuous at each z0 ∈ Ω. By Proposition
2.8, F is equicontinuous over every compact X ⊂ Ω, establishing condition (i).

To show condition (ii), we show that W = {f(z0) : f ∈ F} has compact closure in Y , using
a similar argument to the proof of Theorem 2.4. Fix ϵ > 0 and let yn ∈ W be a sequence
in the closure, then there is a sequence fn(z0) ∈ W for some sequence fn ∈ F , such that
d(fn(z0), yn) < 1/n. By normality, there is a subsequence fnk

→ f which converges uniformly
on the compact set {z0} ⊂ Ω. Thus there exists N ∈ N such that for all nk ≥ max{2/ϵ,N},

d(ynk
, f(z0)) ≤ d(ynk

, fnk
(z0)) + d(fnk

(z0), f(z0)) < ϵ/2 + ϵ/2 = ϵ.

So ynk
→ f(z0) ∈ W , meaning W is sequentially compact and thus compact as we are in a

metric space. Thus W is relatively compact. This establishes one direction of the proof.

We now assume conditions (i) and (ii), and deduce normality. There exists a countable
dense subset of Ω, for example, all the points with rational real and imaginary parts. Let
{zm}m∈N ⊂ Ω be an enumeration of this set, so for every point z ∈ Ω, we can find a zm
arbitrarily close to z. If for each sequence fn ∈ F we can find a subsequence fnk

which
converges at all zm ∈ Ω, then by density this sequence must converge at every z ∈ Ω.
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Let {fn} ⊂ F . By condition (ii) the sequence {fn(z1)}∞n=1 has a convergent subsequence, we
will write this as {f1,n(z1)}∞n=1, such that the sequence of functions f1,n converge pointwise to
some value at z1. By condition (ii) again, we now take another subsequence {f2,n(z1)}∞n=1 of
these this previous sequence, which now converges at z1 and z2. We can repeat this process
iteratively to construct a subsequence which converges at all {z1, z2, .., zm}. we express each
sequence below where each row is a subsequence of the row above.

f1,1 f1,2 f1,3 ...
f2,1 f2,2 f2,3 ...
f3,1 f3,2 f3,3 ...
...

...
...
. . .

The first-row sequence converges at z1, the second row converges at z1 and z2, the third at
z1, z2 and z3 and so on. By taking the subsequence along the diagonals, fnk

:= fn,n we have
a subsequence of the original sequence which converges at every point zm ∈ Ω. Since these
points are dense and each fnk

is continuous, it follows that fnk
converges pointwise everywhere

in Ω. For clarity, we will now refer to this convergent subsequence as fk.

For the convergence to be uniform on compacta, we make use of equicontinuity from condition
(i). Since pointwise convergence tells us little about the limit function’s behaviour, we will
show that the sequence fk is uniformly Cauchy and thus uniformly convergent, since C(Ω, Y )
is complete. Let X ⊂ Ω be compact and fix ϵ > 0. By equicontinuity, there exists a δ > 0
such that for all z, z0 ∈ X and f ∈ F , |z − z0| < δ implies

d(f(z), f(z0)) < ϵ/3. (2.2)

By compactness, there exists a finite subcovering of X with balls of size δ/2

X ⊂
l⋃

r=1

B(ζr, δ/2); ζr ∈ X and l ∈ N.

By pointwise convergence (and thus pointwise Cauchy), for each ζr there exists anMr > 0 for
which d(fki(ζr), fkj (ζr)) < ϵ/3 for ki, kj ≥Mr.

2 Since there are only finitely many ζr, taking
M = max1≤r≤lMr gives us that for all ki, kj ≥M we have

d(fki(ζr), fkj (ζr)) < ϵ/3.

Since each z ∈ X is in one of the finite δ/2 balls of our covering, each z has a ζr for which
|z − ζr| < δ and thus by (2.2)

d(fki(z), fki(ζr)) < ϵ/3 and equivalently d(fkj (z), fkj (ζr)) < ϵ/3.

Thus for each z ∈ X and its corresponding ζr, and for ki, kj ≥M

d(fki(z), fkj (z)) ≤d(fki(z), fki(ζr)) + d(fki(ζr), fkj (ζr)) + d(fkj (z), fkj (ζr))

<ϵ/3 + ϵ/3 + ϵ/3 = ϵ.

This concludes the proof, as since M is independent of z then fk is uniformly Cauchy, and
thus uniformly convergent on X since C(Ω, Y ) is complete. Thus every sequence in F has a
subsequence that converges compactly, so F is normal as required.

2Here, ki and kj represent two different terms in the sequence fk, used for the Cauchy property.
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Both of the conditions in Arzelà–Ascoli are local conditions, since by Proposition 2.8 condition
(i) is equivalent to being equicontinuous at each point. Thus, it is apparent that the normality
of a family is a local property. We consider a family F normal at a point z0 ∈ Ω if it is normal
on some neighbourhood of z0. Then, F fails to be normal on Ω if there is some point in Ω at
which F is not normal.

Corollary 2.10. A family F ⊂ C(Ω, Y ) is normal if and only if it is normal at each z ∈ Ω.

Proof. It is clear that if we have equicontinuity on a neighbourhood of each point then we
have pointwise and thus equicontinuity over compacta of Ω, for Arzelà–Ascoli condition (i).
The converse is trivially true. Arzelà–Ascoli condition (ii) on a neighbourhood of each point
is trivially equivalent to being satisfied on all Ω.

Example 2.11. Consider the family of continuous functions F ⊂ C((−1, 1),R) given by

F = {f(x) = sin(nx) : n ∈ N}.

Since for each x ∈ R the sets {sin(nx) | n ∈ N} are contained in [−1, 1], they are bounded and
thus relatively compact so condition Arzelà–Ascoli condition (ii) holds. However, F fails to be
equicontinuous on compacta - take the interval [0, 1/2] ⊂ (−1, 1) and fix ϵ = 1/2. Arguing by
contradiction we assume there is an δ > 0 such that for all n ∈ N, | sin(nx1)− sin(nx2)| < 1/2
for all |x1 − x2| < δ inside [0, 1/2]. If such a δ exists, then any smaller δ also work, so we can
assume δ < 1/2. Choose N ∈ N such that π/(2N) < δ, then taking x1 = 0 and x2 = π/(2N)
gives

| sin(N0)− sin(Nπ/(2N))| = | sin(π/2)| = 1 <
1

2
.

This is a clear contradiction, so F is not equicontinuous here. A similar argument shows
equicontinuity fails everywhere on the real line for this family, as we can find suitably large n
such that sin(nx) is arbitrarily steep on any neighbourhood of any point, contradicting any
δ which would potentially work there. It follows that F is not normal on (−1, 1), or in fact
more generally anywhere in R.

Example 2.12. Consider the family of continuous functions F ⊂ C(D,C) given by

F =

{
f(z) =

1

z + n
: n ∈ N

}
.

It is clear that for each n the supremum value of each function on D is approached as we
approach z = −1 on the boundary of D. In the case n = 1 this limit diverges to infinity. The
points in any compact set X ⊂ D are bounded away from −1, so the functions are defined on
all of D. Let X ⊂ D be compact and let r > 0 be the minimum Euclidean distance between
−1 and any point in X. For all n ∈ N (and consequently all f ∈ F) and z, w ∈ X

|f(z)− f(w)| =
∣∣∣∣ 1

z + n
− 1

w + n

∣∣∣∣ = ∣∣∣∣ w − z

(z + n)(w + n)

∣∣∣∣ ≤ 1

r2
|z − w|.

Thus for fixed ϵ > 0, picking δ = r2ϵ/2 gives equicontinuity over X, Arzelà–Ascoli condition
(i). Each z ∈ D is contained in some X compact and thus the functions are bounded at z by
1/r above, so Arzelà–Ascoli condition (ii) holds also. Thus by Arzelà–Ascoli F is normal on
D.
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3 Holomorphic Normal Families

In the previous chapter, we developed an understanding of the space of continuous functions
C(Ω, Y ), and established conditions required for subsets of this space to be relatively compact
in the compact-open topology, as a normal family. This chapter begins by studying the smaller
subspace of holomorphic functions. We then give an equivalent condition for the normality of
a family in this space.

3.1 The space of holomorphic functions

We define the space of holomorphic functions on Ω by

H(Ω) := {f : (Ω, | · |R2) → (C, | · |R2) | f holomorphic} .

Since holomorphic functions are continuous, it is clear that H(Ω) ⊂ C(Ω,C). This means
we can make use of the same metric ρ(f, g) we established in Chapter 2. Recall that our
proof of Arzelà–Ascoli established that the two conditions implied every sequence must have
a uniformly Cauchy subsequence, and we used the completeness of C(Ω, Y ) to deduce the
existence of a limit function. Thus, we need H(Ω) to be complete if we want to make use of
Arzelà–Ascoli on this subspace. This is indeed the case, as we now prove, following [1, 7].

Theorem 3.1 (Weierstrass’s Theorem). Let {fn} ⊂ H(Ω) be a sequence of holomorphic
functions which converge compactly to some fn → f on Ω. Then f is holomorphic on Ω, that
is f ∈ H(Ω).

Proof. Let z0 ∈ Ω be arbitrary, then by openness of Ω, we can find a closed ball B(z0, r) ⊂ Ω.
This ball is compact so we have uniform convergence here. If γ is a closed curve in B(z0, r)
then by Cauchy’s theorem, for all n ∈ N we have∫

γ
fn(z)dz = 0.

Taking the limit as n→ ∞ by uniform convergence we deduce

lim
n→∞

∫
γ
fn(z)dz =

∫
γ
lim
n→∞

fn(z)dz =

∫
γ
f(z)dz = 0

for any closed contour γ ⊂ B(z0, r). Thus by Morera’s theorem, f is holomorphic at z0, so f
is holomorphic on Ω since z0 was arbitrary.

Corollary 3.2. H(Ω) equipped with the metric ρ(f, g) for C(Ω,C) is a complete metric space.

We now know we can apply Arzelà–Ascoli on H(Ω). Weierstrass’s theorem shows us the power
of compact convergence, preserving not only continuity but holomorphicity also. In fact, more
structure is preserved, as we see in the below theorem due to A. Hurwitz.

Theorem 3.3 (Hurwitz’s Theorem). Let {fn} ⊂ H(Ω) be a sequence of compactly convergent
holomorphic functions with limit fn → f , and let a ∈ C. If fn(z) ̸= a on Ω for all n ∈ N then
either f is constant with f(z) ≡ a on Ω, or f(z) ̸= a on Ω.
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Proof. By considering the sequence gn(z) = fn(z)−a with limit g(z) = f(z)−a, we can assume
without loss of generality that a = 0. Suppose f is not identically zero. f is holomorphic
since compact convergence preserves holomorphicity, and so the zeros of f must be isolated
(this is a well-known property of holomorphic functions).

The openness of Ω and the principle of isolated zeros tell us that for a zero z0 ∈ Ω of f , we
can find r > 0 such that f(z) ̸= 0 on the closed punctured disc {z : 0 < |z − z0| ≤ r}. More
specifically, on the circle |z− z0| = r, f(z) ̸= 0. Since this circle is compact then f is bounded
away from zero, so 1/fn converges uniformly to 1/f here also. We also know that f ′n → f ′

uniformly on this compact set. Thus the product of 1/f and f ′ converges uniformly here also.
It follows that

lim
n→∞

1

2πi

∫
|z−z0|=r

f ′n(z)

fn(z)
dz =

1

2πi

∫
|z−z0|=r

lim
n→∞

f ′n(z)

fn(z)
dz =

1

2πi

∫
|z−z0|=r

f ′(z)

f(z)
dz.

The argument principle tells us that for each n the integral on the left is the number of zeros
contained inside the circle, so must equal zero since fn(z) ̸= 0 on all Ω for all n ∈ N. But
the integral on the right tells us the number of zeros f has inside this circle so f must also
be nonzero here, contradicting that z0 was a zero of f . It follows that f(z) ̸= 0 on Ω as
required.

Hurwitz’s theorem will be crucial to many proofs throughout this report. That compact
convergence of sequences of holomorphic functions must be so well-behaved is very useful.
We see how the result does not necessarily hold in the real-valued case, and confirm the result
in two cases with the examples below.

Example 3.4. Consider the real-valued continuous functions

fn : R → R fn(x) = x2 + 1/n→ f(x) = x2.

Each function is never zero on R, but the limit function f(x) = x2 has a zero. If we instead
considered these functions with a holomorphic domain containing zero, then each function
would have a zero f(i/

√
n) = 0, so Hurwitz would not apply.

Example 3.5. Let fn ∈ H(D) be defined as

fn(z) =
1

z + n
.

We know from Example 2.12 that these functions form a normal family and it follows that
these functions (or a subsequence) converge compactly on D to some f(z). Observing that the
functions are monotone decreasing at each fixed z, we do not need to pass to a subsequence.
These functions are never equal to 0 on D so by Hurwitz’s theorem, the limit function must
either be never zero or identically zero. fixing z = 0, we see that 1/n→ 0 so the limit function
satisfies f(0) = 0. Thus f(z) ≡ 0 everywhere on D.

Example 3.6. Consider the sequence of functions fn ∈ H(C) defined by

fn(z) = ez cos
( z
n

)
.

For suitably large n, these functions are nowhere zero on any compact subset of C. We first
show the sequence is compactly convergent. The balls B(0,M), M ∈ N form an exhaustion
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of C. Fixing some M , we will show normality on this ball. The image of any fn at any point
in B(0,M) is bounded by∣∣∣ez cos( z

n

)∣∣∣ = |ez| ·

∣∣∣∣∣eiz/n + e−iz/n

2

∣∣∣∣∣ ≤ eM · 2e
M

2
= e2M .

Thus, Arzelà–Ascoli condition (ii) is satisfied. For equicontinuity, fix ϵ > 0 and choose arbi-
trary z, w ∈ B(0,M). Observe that

|fn(z)− fn(w)| = |ez cos(z/n)− ew cos(w/n)|
≤ |ez cos(z/n)− ew cos(z/n)|+ |ew cos(z/n)− ew cos(w/n)|
≤ |ez − ew|+ |ew|| cos(z/n)− cos(w/n)|. (3.1)

ez is continuous and thus uniformly continuous on any compact set, and also bounded by eM

on B(0,M). It follows that we need only prove the equicontinuity of cos(z/n). This is because
if have equicontinuity of these on B(0,M), then we can find a suitable δ1 > 0 for which

| cos(z/n)− cos(w/n)| < ϵ

2eM
.

Then, combining this with the uniform δ2 for |ez − ew| < ϵ/2 here gives equicontinuity. By
uniform continuity of cos(z), we can find δ1 > 0 such that for all z, w ∈ B(0,M),

|z − w| < δ1 =⇒ | cos(z)− cos(w)| < ϵ

2eM
.

But now for all n ∈ N, for all z′/n,w′/n ∈ B(0,M) the above holds. By translation, noting
that B(0,M) ⊂ B(0, nM), we have for all n ∈ N and z′, w′ ∈ B(0,M)

|z′ − w′| < δ1 =⇒ | cos(z′/n)− cos(w′/n)| < ϵ

2eM
.

Now by (3.1), for any n ∈ N and all z, w ∈ B(0,M) we have

|fn(z)− fn(w)| ≤ |ez − ew|+ |ez|| cos(z/n)− cos(w/n)| < ϵ/2 + eM
ϵ

2eM
= ϵ.

This gives equicontinuity of fn over any element of the exhaustion, so we have equicontinuity
anywhere in C giving Arzelà–Ascoli condition (i). It follows that the sequence is compactly
convergent, and so by Hurwitz’s theorem the limit function is either everywhere zero or
nowhere zero. It is clear the limit is ez, as fixing any z, the pointwise limit of the cosine
approaches 1. This confirms what Hurwitz’s theorem tells us, as ez is nowhere zero as required.

3.2 Local boundedness and Montel’s theorem

If we ask for the additional structure that our functions are holomorphic, it is natural to expect
that sufficient conditions for normality may be stronger. This strength comes in the form of
Montel’s theorem, proven in his first paper on the subject in 1907 [21]. It turns out that
for holomorphic families, we can remove the requirement of equicontinuity if we strengthen
Arzelà–Ascoli condition (ii) to a local rather than pointwise property.

For the space C(Ω,C), Arzelà–Ascoli condition (ii) is equivalent to the family being uniformly
bounded at each z ∈ Ω by some constant Mz > 0, such that |f(z)| ≤ Mz for all f ∈ F .
This follows from the Heine-Borel theorem, as any bounded subset of C has compact closure.
Instead of being pointwise bounded in this fashion we now define a stronger, local version of
boundedness for a family.
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Definition 3.7. A family F ⊂ H(Ω) is locally bounded on Ω if for all compact X ⊂ Ω there
exists a constant MX > 0 such that for all f ∈ F and z ∈ X, |f(z)| ≤ MX . A trivial open
covering compactness argument tells us this is equivalent to being uniformly bounded on some
open neighbourhood of each point in Ω.

Theorem 3.8 (Montel’s Theorem). [1] Let Ω ⊂ C be open and F ⊂ H(Ω), a family of
holomorphic functions. Then F is normal if and only if it is locally bounded.

Proof. First, suppose F is normal. Then by Arzelà–Ascoli, F is bounded and equicontinuous
at each point in Ω. Let X ⊂ Ω be compact. Fix ϵ = 1, by equicontinuity and Proposition 2.8
there exists a δ > 0 such that for all f ∈ F , z ∈ X and w ∈ B(z, δ),

|f(z)− f(w)| < 1.

By pointwise boundedness, for each z ∈ X there exists Mz > 0 such that |f(z)| ≤ Mz for all
f ∈ F . Thus for w ∈ B(z, δ)

|f(w)| ≤ |f(z)|+ |f(z)− f(w)| ≤Mz + 1.

By compactness the collection of open δ balls form an open cover of X so for a finite collection
of {zi} ⊂ X we have

X ⊂
n⋃

i=1

B(zi, δ).

And thus for all f ∈ F and w ∈ X,

|f(w)| ≤ max
1≤i≤n

{Mzi}+ 1

so F is locally bounded.

To prove the converse, assume F is locally bounded. Then F is clearly pointwise bounded
so condition (ii) of Arzelà–Ascoli holds. Thus, it is sufficient for us to show F is pointwise
equicontinuous, then by Proposition 2.8 and Arzelà–Ascoli normality follows.

Fix z ∈ Ω. Since Ω is open, we can find r > 0 such that B(z, 2r) ⊂ Ω. By local boundedness,
let M be such that |f(w)| ≤ M for all f ∈ F and all w ∈ B(z, 2r). By Cauchy’s integral
formula, for any z1, z2 ∈ B(z, r), the concentric disc of half radius we have for any f ∈ F :

f(z1)− f(z2) =
1

2πi

∫
|ξ−z|=2r

(
1

ξ − z1
− 1

ξ − z2

)
f(ξ)dξ

=
z1 − z2
2πi

∫
|ξ−z|=2r

f(ξ)dξ

(ξ − z1)(ξ − z2)
.

We are integrating around a simple closed curve so this integral is bounded by the length
of the contour multiplied by the supremum of the integrand over the curve1. We know that
the length of the curve is 4πr and that for all f ∈ F we have f(ζ) ≤ M . Also observe that

1A standard approximation result for integrals, sometimes known as the estimation lemma or ML inequality.
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|ξ− zi| > r for each zi, since ξ runs over the boundary of the 2r-ball and the zi are inside the
r-ball.

|f(z1)− f(z2)| ≤
(
|z1 − z2|

2π

)
(4πr)

(
sup

|ξ−z|=2r

|f(ξ)|
|ξ − z1||ξ − z2|

)

≤ 2r|z1 − z2|
M

r2

=
2M

r
|z1 − z2|.

Now for fixed ϵ > 0 we choose
δ =

rϵ

4M
.

Since M and r are independent of the choice of f ∈ F such that for all f ∈ F we have
|f(w1) − f(w2)| ≤ ϵ/2 < ϵ whenever |w1 − w2| < δ. Thus F is pointwise equicontinuous, so
equicontinuous on compacta by Proposition 2.8. We have established both conditions (i) and
(ii) for Arzelà–Ascoli, so F is normal.

In essence, Montel’s theorem is saying that the space H(Ω) has the Heine-Borel property that
this form of boundedness along with closure is sufficient for compactness. Note that a family
being locally bounded is not equivalent to being bounded in the metric ρ however, as ρ is
always bounded by 1. Remember that we could only apply Arzelà–Ascoli here because H(Ω)
is a complete metric space.

We demonstrate the utility of Montel’s theorem in the examples below, now no longer having
to check equicontinuity as we did in the previous examples of continuous functions.

Example 3.9. Consider the family F ⊂ H(D \ {0}) on the punctured disc given by

F =

{
f(z) =

1

zt
: t ∈ (1, 2)

}
.

For any X ⊂ D \ {0} compact, by closure, the infimum radial distance r > 0 from any point
in X to 0 is attained by some z = reiθ ∈ X, so the points are bounded away from 0 on X.
Thus on X, we have

|f(z)| = 1

|z|t
≤ 1

|z|
≤ 1

r

for all f ∈ F , so F is locally bounded on the punctured disc, and thus normal here.

Example 3.10. Consider the family F ⊂ H(D) given by

F = {f(z) = sin(nz) : n ∈ N}.

We saw a similar family already in Example 2.11 where instead the domain of the functions
was (0, 1). There F failed to be normal, as although all the values of the functions lay inside
the compact [−1, 1], it was not equicontinuous at any point in (0, 1) (we only showed one
place as this was enough to establish lack of normality).

It is clear that for compact subsets of (0, 1) ⊂ R, the functions are locally bounded and
since these functions are holomorphic on (0, 1), one might conclude this family is normal on
(0, 1) by Montel’s theorem, contradicting our prior result. However, this argument makes a
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subtle oversight. Although the interval (0, 1) is open in R, it is not open in C so we cannot
invoke Montel’s theorem to deduce normality here. A crucial part of our proof involved
taking an open neighbourhood of each point, and each point in (0, 1) does not have an open
neighbourhood inside this set when viewed as a subset of C.

Returning to the family F here, we see that it is not locally bounded on D. Although it is on
the real line, the holomorphic extension of sin(z) to C is unbounded. Assuming such a bound
M did exist on the compact {i/2} ⊂ D would imply

| sin(ni/2)| =

∣∣∣∣∣en/2 − e−n/2

2

∣∣∣∣∣ ≤M for all n ∈ N.

This is clearly false as this modulus can be made arbitrarily large by choosing n large enough.
It follows that F fails to be normal on D by Montel’s theorem.

Example 3.11. Consider the family of holomorphic functions F ⊂ H(C) given by

F = {f(z) ≡ n | n ∈ N}.

These functions are each well behaved and any sequence must either have infinitely many
terms the same, in which case there is a convergent subsequence or alternatively the sequence
must tend to infinity. The way in which these sequences approach infinity is uniform, so in
a certain sense this family feels somewhat akin to a normal family. However, this family is
clearly not locally bounded and thus not normal under our current definition. We will discuss
this case and how to deal with this convergence to infinity in Chapter 5.

We have now developed sufficient machinery to discern the normality of many families of
continuous and holomorphic functions, and are ready to put this to use to prove the Riemann
mapping theorem.
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4 The Riemann Mapping Theorem

In 1851 Bernhard Riemann claimed the following (translated from German) in his inaugural
dissertation. ”Two given simply connected plane surfaces can always be mapped onto one
another in such a way that each point of the one corresponds to a unique point of the other in
a continuous way and the correspondence is conformal; moreover, the correspondence between
an arbitrary interior point and an arbitrary boundary point of the one and the other may be
given arbitrarily, but when this is done the correspondence is determined completely.” [14]

This was the first formulation of the Riemann mapping theorem. His proof of the result, how-
ever, was flawed - it made excessive assumptions regarding the smoothness of the boundary,
as well as the existence of a particular minimum when in fact all that could be asserted was
that the infimum was non-negative. The first rigorous proof of the result was given by William
Osgood nearly 50 years later in 1900 [36]. The proof we give here is different to both original
approaches, making use of the machinery regarding normal families we have developed so far.
Crucial to the proof are the theorems of Hurwitz and Montel, as well as another powerful
lemma that we will prove. We now state the theorem in its modern form.

4.1 Statement and preparation

Theorem 4.1 (The Riemann Mapping Theorem). [1, 32, 35] Let Ω ⊂ C be a simply connected
domain which is not all of C. Then there exists a biholomorphism F : Ω → D. If we further
choose a point z0 ∈ Ω, and require F (z0) = 0 and F ′(z0) > 0 then this biholomorphism is
unique.

Topological equivalence between simply connected domains in C is of course trivial, but the
fact that we must have a biholomorphism is not at all evident at first. Note that there can be
no such biholomorphism for Ω = C by Liouville’s theorem. Such a biholomorphism from C to
D would be entire and bounded and thus necessarily constant. We do not need the domain
to be bounded, however, as we see with Ω2 in Figure 4.1.

Figure 4.1: Simply connected domains Ω1,Ω2, which must have biholomorphisms to D.

Corollary 4.2. Any two simply connected domains are biholomorphically equivalent.

Proof. This follows immediately, as if Ω1,Ω2 are arbitrary simply connected domains then
there exist biholomorphisms F1 : Ω1 → D and F2 : Ω2 → D and thus the composition
F1 ◦ F−1

2 : Ω2 → Ω1 is a biholomorphism between these domains.
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If there is one biholomorphism from Ω to D then we could generate an infinite number by
subsequently composing with any arbitrary disc rotation. By requiring that F ′(z0) is real and
positive this gives us a unique choice from the equivalence class of biholomorphisms equivalent
under rotation. Thus fixing the argument of an image point is a necessary condition for our
uniqueness claim, and it turns out it will also be sufficient.

Before we begin our proof of the Riemann mapping theorem, we establish a powerful lemma
below.

Lemma 4.3 (Schwarz’s lemma). [27, 35] Let f : D → D be a holomorphic with f(0) = 0.
Then

|f(z)| ≤ |z|

for all z ∈ D, and |f ′(0)| ≤ 1. Furthermore, if |f ′(0)| = 1 or |f(z)| = |z| for some non zero
z ∈ D then we must have f(z) = az for some a ∈ C with |a| = 1.

Proof. Assume f is as in the theorem, and consider the function g : D → D given by:

g(z) =

{
f(z)
z if 0 < |z| < 1

f ′(0) if z = 0

We claim g(z) is holomorphic on D. Clearly, g is holomorphic on D \ {0}, as it is the quotient
of two holomorphic functions and the denominator is non-zero. To see g extends to be
holomorphic at z = 0, consider the Taylor series for f(z) which exists by holomorphicity:

f(z) =

∞∑
n=1

anz
n; an ∈ C

= a1z + a2z
2 + a3z

3 + a4z
4 . . .

= z(a1 + a2z + a3z
2 + a4z

3 . . . ).

Note that the sum starts from n = 1 since our condition f(0) = 0 =⇒ a0 = 0. Clearly
dividing by z to obtain a Laurent series for f(z)/z gives a Taylor series, so f(z)/z extends to
be analytic and thus holomorphic at z = 0. Evaluating this power series at 0 gives a1 = f ′(0)
matching our definition for g as required; so g is indeed holomorphic on D.

Now fixing some r < 1, for any z with |z| < r < 1 by the max modulus principle we have g
bounded by the supremum of the values it takes on the unit circle:

|g(z)| ≤ sup
|z|=r

|g(z)| = sup
|z|=r

∣∣∣∣f(z)z
∣∣∣∣ ≤ sup|z|=r |f(z)|

r
≤ 1

r
.

Where in the last inequality we have used that f maps into D so is bounded by 1. Now noting
that the LHS is independent of r, we take the limit r → 1−, giving us the required inequality:

|g(z)| ≤ 1 =⇒ |f(z)| ≤ |z|.

For the proof of the second condition, first, assume |f(z0)| = |z0| for some z0 ∈ D. Then
|g(z0)| = 1, and since |g(z)| ≤ 1 then by the max modulus principle, g(z) = a for some
a ∈ C with |a| = 1. It follows that f(z) = az. In the case that f ′(0) = 1 this directly implies
g(0) = 1, so by the max modulus principle again we deduce f(z) = az, |a| = 1 as required.
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4.2 Proof of the Riemann mapping theorem

We follow proof of the Riemann mapping theorem from [1, 32, 35]. Our proof will focus on
the family of functions

F = {f : Ω → D | holomorphic, injective and f(z0) = 0} , (4.1)

where z0 is the point given in the statement of the theorem. We proceed in 4 stages.

1. We will show that F is non-empty, by constructing a member.
2. Next, we prove F is normal in H(Ω). This will be used to establish that there is an
F ∈ F with maximal value of |F ′(z0)|.

3. We then deduce that this F surjects onto D, establishing it as a biholomorhism.
4. Finally, we show that the conditions stated in the theorem force F to be unique.

4.2.1 Showing F is non-empty

We will first show that F is non-empty, by constructing a member of the family which satisfies
all necessary conditions. This construction comes from [32].

Since Ω ̸= C we can find a ∈ C \ Ω. Since z − a has no zero on Ω there exists g ∈ H(Ω) with
g(z)2 = z − a with some choice of branch of square root.

Let z, w ∈ Ω. If g(z) = g(w) or g(z) = −g(w) then z = w, since

z − a = g(z)2 = g(w)2 = w − a.

So not only is g injective, but also if g takes some value g(z) on Ω then it cannot also take
the value −g(z) on Ω, as the only candidate value that g could map to −g(z) is z, but this is
mapped to g(z). By our construction with the holomorphic root, these values are never equal
as this could only occur if they were both zero. Thus

g(Ω) ∩ (−g(Ω)) = ∅. (4.2)

Fix w ∈ Ω. By the open mapping theorem, there must be some open ball in the image of
Ω under g, B(w, ϵ) ⊂ g(Ω) for some ϵ > 0. By (4.2), B(−w, ϵ) is disjoint from g(Ω) so
|w + g(z)| ≥ ϵ for all z ∈ Ω, see Figure 4.2.

Figure 4.2: Finding an open ball B(−w, ϵ) disjoint from g(Ω).
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We now construct a function based on g which satisfies all our requirements for membership
of F :

f(z) =
ϵ/3

w + g(z)
− ϵ/3

w + g(z0)
.

Holomorphicity and injectivity are clearly inherited from g, and we have f(z0) = 0. For z ∈ Ω
we have

|f(z)| =
∣∣∣∣ ϵ/3

w + g(z)
− ϵ/3

w + g(z0)

∣∣∣∣
≤ ϵ/3

|w + g(z)|
+

ϵ/3

|w + g(z0)|

≤ ϵ/3

ϵ
+
ϵ/3

ϵ
= 2/3 < 1,

first by triangle inequality, then since |w+g(z)| ≥ ϵ for z ∈ Ω. Thus f ∈ F , so F is non-empty
as required.

Finally, we also observe that

f ′(z) =
−g′(z)

(w + g(z))2
> 0 =⇒ |f ′(z0)| > 0. (4.3)

4.2.2 Existence of F ∈ F with maximal |F ′(z0)|

We will now make use of the theorems of Montel and Hurwitz to establish that there is some
function F ∈ F , such that the value |F ′(z0)| ≥ |f ′(z0)| for all f ∈ F . Since each function
is holomorphic then the value of |f ′(z0)| is well defined and finite for each f , but it is not
apparent that the supremum of these values should be finite, let alone attained by some
function in the family. We set c as this supremum with the knowledge that we could have
c = ∞:

c = sup
{
|f ′(z0)| : f ∈ F

}
.

We must have c > 0 since the function constructed in the previous section has a non-zero
derivative at z0. It is clear that there must be some sequence of functions fn ∈ F for which
fn(z0) → c, if this were not the case then every sequence of this form would be bounded
away from c from below and thus we could choose a new smaller bound for these values,
contradicting that c is the supremum.

Since all f ∈ F map to D, their values are bounded by |f(z)| < 1 uniformly, and thus by
Montel’s theorem F is a normal family. Thus there exists a convergent subsequence of the
above sequence, fnk

→ F for some F . By uniform convergence F is holomorphic, F (z0) = 0
and |F (z)| ≤ 1 on Ω. By the open mapping theorem F must map open sets to open sets,
and so we can further deduce that |F (z)| < 1, as F can at the most map to the largest open
set inside the closed disc, the open disc D. It remains to show injectivity of F , and this is
established through an application of Hurwitz’s theorem.

Fix z1 ∈ Ω and consider the compactly convergent sequence of functions defined on Ω by

gn(z) := fn(z)− fn(z1).

with compactly convergent limit g(z). Since fn(z) are injective, it follows that gn(z) ̸= 0
on Ω \ {z1} as otherwise, fn(z) would attain the same value at z1 as it does elsewhere,
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contradicting injectivity. Now by Hurwitz’s theorem, the limit function g(z) = F (z)− F (z1)
either is everywhere zero or never zero on Ω.

If g is everywhere zero then F is constant with F (z) ≡ F (z1) = F (z0) = 0, but then F ′(z0) =
c = 0, implying all the functions in the family have zero modulus derivative at z0. But this
is not the case since our previous construction (4.3) has a positive modulus derivative at z0.
Thus it must be the case that F (z) − F (z1) ̸= 0 on Ω \ {z1}. Since we fixed z1 arbitrarily,
this establishes injectivity of F , since it cannot take the same value at any distinct z, z1 ∈ Ω.

F satisfies all the necessary conditions for membership of F , so we must have F ∈ F which
attains the maximal value of |F ′(z0)| as required.

4.2.3 F surjects onto D

We have now shown that F is non-empty and contains a function F ∈ F for which |F ′(z0)| ≥
|f ′(z0)| for all f ∈ F . We will now prove that this F is surjective onto D, and thus we
have found our biholomorphism from Ω to D. This is established by showing that if F did not
surject, we would be able to construct a function with a larger derivative at z0, a contradiction
to F having the maximal such value.

Assume that F does not surject onto D, then there exists some w ∈ D \ F (Ω). We define ψw

as the disc automorphism which interchanges w and 0, given by

ψw(z) =
w − z

1− wz
.

We have that ψw ◦ F (z) is nowhere zero, since F maps no point to w, and the only point
mapped to 0 by ψw is w. Thus we can define a holomorphic root of this function on Ω:

h(z) =
√
ψw ◦ F (z).

We have that h(z0) =
√
ψw(0) =

√
w. We now compose h with ψ√

w, the disc automorphism
which sends

√
w to zero, and define this new function as

G(z) = ψ√
w ◦ h(z).

We have G(z0) = ψ√
w(h(z0)) = ψ√

w(
√
w) = 0, and G(z) is bijective as is a composition of

bijective maps - F is a biholomorphism so bijective, both disc automorphisms are bijective,
and since we have fixed a branch of square root this is too. We also know G is holomorphic,
and maps Ω → D as each composition takes D to D. Since G satisfies all conditions for
membership we have G ∈ F . We have that

F (z) = ψw ◦ sq ◦ ψ√
w ◦G(z) = Ψ ◦G(z)

where
Ψ : D → D Ψ(z) = ψw ◦ sq ◦ ψ√

w(z) sq(z) = z2.

Now by Schwarz’s lemma, |Ψ′(z)| ≤ |z| and |Ψ′(0)| ≤ 1. If |Ψ′(0)| = 1 then by Schwarz’s
lemma Ψ(z) = az, a ∈ C with |a| = 1. This would imply Φ is injective. But we know this
cannot be true since it is composed of the squaring function sq which is 2 to 1, and thus we
cannot have |Ψ′(0)| = 1. So in fact |Ψ′(0)| < 1. Now by the chain rule

F ′(z0) = Ψ′(G(z0))G
′(z0) = Ψ′(0)G′(z0),

implying |F ′(z0)| < |G′(z0)|, contradicting our maximality assumption for |F ′(z0)|. Thus it
must be that no such w ∈ D \ F (Ω) exists, so F surjects onto D as required.
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Figure 4.3: Constructing G(z).

4.2.4 Uniqueness of the map

Finally, we prove the uniqueness claim with a simple application of Schwarz’s lemma.

Let F1, F2 : Ω → D be two biholomorphisms as in the Riemann mapping theorem. We let
f := F1 ◦ F−1

2 , and observe that

(a) f and f−1 are bijections f, f−1 : D → D,
(b) both map f(0) = f−1(0) = 0,
(c) both have real positive derivatives f ′(0), (f−1)′(0) > 0.

By Schwarz’s lemma on f and f−1 we have both

|f(z)| ≤ |z| and |f−1(z)| ≤ |z|.

Letting w = f(z) combined with the second inequality gives |z| ≤ |f(z)|, so in fact we must
have that |f(z)| = |z|. By the second part of Schwarz’s lemma, we have f(z) = az for some
a ∈ C with |a| = 1. Thus f ′(z) = a everywhere, so we must have a = 1 since the derivative
is real and positive. We have concluded that F1 ◦ F−1

2 (z) = f(z) = z and since both are
bijections this gives us F1(z) = F2(z) as required.

This completes the proof of the Riemann mapping theorem, as we have shown the existence
of a unique biholomorphism F from an arbitrary simply connected open set Ω ⊂ C to the
unit disc D with the specifications stated. Note that this result tells us nothing about how
one might go about finding such a mapping, merely its existence.
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5 Meromorphic Normal Families

In Chapter 2 and Chapter 3, we developed our understanding of normal families of contin-
uous and holomorphic functions, providing powerful characterizations of each in the form of
the Arzelà–Ascoli theorem and Montel’s theorem. We discussed in Example 3.11 that the
convergence of the functions fn(z) ≡ n was well-behaved in the way it approached infinity.
In this chapter, we extend the notion of normality we have defined to allow convergence to
infinity in certain cases. This will enable us to construct a sensible notion of normality for
families of meromorphic functions.

5.1 The Riemann sphere

We begin by equipping the codomain of meromorphic functions C∞ := C∪{∞} with a metric.
We achieve this by viewing points in C∞ as points on the sphere S2 and choosing a metric
which suitably corresponds to the distance between the spherical representation of each point.
Construction of the Riemann sphere by stereographic projection is seen in most first courses
in complex analysis, so we briefly summarise the derivation here and make use of the formulas
produced. For a detailed derivation, see [7, 8].

We will represent each point z = x+ iy ∈ C as a point on the unit sphere in R3, the set of all
points satisfying r2 + s2 + t2 = 1. To avoid confusion with the complex number z = x + iy
we will use (r, s, t) for coordinates in R3. The representation of each x + iy is given by the
unique point on the sphere that intersects the line passing through the north pole of the
sphere N := (0, 0, 1) and the point (x, y, 0), see Figure 5.1. Conversely, given any point on the

Figure 5.1: Inverse stereographic projection of the point (x, y, 0) onto S2.

sphere p ∈ S2 that is not N , it is evident that the line passing through p and N intersects a
unique point in the rs-plane. This establishes a bijection between C and S2 \ {0}, given by
the stereographic projection formulas P, P−1 below.

P : C → S2 \ {N}

P (z) =

(
2x

1 + |z|2
,

2y

1 + |z|2
,
|z|2 − 1

|z|2 + 1

)
P−1(r, s, t) =

r

1− t
+ i

s

1− t
.

We can see that the formulas for P and P−1 are clearly continuous and thus P is a bijec-
tive continuous map with continuous inverse, establishing a homeomorphism C ∼= S2 \ {N}.
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Observe that as x2 + y2 = |z| → ∞, P (z) → (0, 0, 1) and for a point p ∈ S2 as p → N ,
|P−1(p)| → ∞, since

|P−1(p)| = r2

(1− t)2
+

s2

(1− t)2
=

1− t2

(1− t)2
=

1 + t

1− t
→ ∞ as t→ 1.

Thus by identifying infinity in all directions of C into a single ”point at infinity”, we extend
the map P by P (∞) := (0, 0, 1) = N , such that P defines a bijection

P : C∞ → S2.

Crucially, this is not a homeomorphism yet, as we have not established any choice of topology
for C∞. However, this will become a homeomorphism if we choose to define our metric on
C∞ to be exactly that which makes P a homeomorphism, such that distance between two
points in C∞ is given precisely by the difference between their spherical representations on
S2. We define our metric for C∞ in this fashion below, making use of the Euclidean metric
in R3, with derivation from [8, 12].

Definition 5.1. We define the chordal metric χ(w1, w2) for w1, w2 ∈ C∞ by considering
the Euclidean distance between the spherical representation of each point on S2. This is
the straight line distance between two points, given by the length of the chord of the sphere
between them. It is not any notion of a distance traversed along the surface of the sphere.
Let w1 = x + iy ∈ C and w2 = u + iv ∈ C, and let W1 = P (w1),W2 = P (w2). The distance
between these points can be calculated directly by brute force algebra, but we can first make
the computation slightly simpler with a trick from [8], observing that pointsW1,W2 ∈ S2 ⊂ R3

are unit vectors and so satisfy

∥W1 −W2∥2 = (W1 −W2) · (W1 −W2) = ∥W1∥2 + ∥W2∥2 − 2W1 ·W2 = 2− 2W1 ·W2.

By making use of this property, and multiplying by the denominators of each of W1,W2, we
deduce

∥W1 −W2∥2(|w1|2 + 1)(|w2|2 + 1)

= 2(|w1|2 + 1)(|w2|2 + 1)− 2(4xu+ 4yv + (|w1|2 − 1)(|w2|2 − 1))

= 2|w1|2|w2|2 + 2|w1|2 + 2|w2|2 + 2− 8xu− 8yv − 2 + 2|w1|2 + 2|w2|2 − 2|w1|2|w2|2

= 4|w1|2 + |w2|2 − 8xu− 8yv

= 4x2 + 4y2 + 4u2 + 4v2 − 8xu− 8yv

= 4(x− u)2 + 4(y − v)2

= 4|w1 − w2|2.

Now we define χ(w1, w2) for w1, w2 ∈ C by

χ(w1, w2) := ∥W1 −W2∥ =
2|w1 − w2|√

1 + |w1|2
√

1 + |w2|2
.

This gives us a formula for this chordal distance entirely in terms of the two complex numbers
w1, w2 ∈ C. Taking the limit as |w2| → ∞ gives

χ(w1,∞) =
2√

1 + |w1|2
.
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This agrees with a simple calculation of the Euclidean distance between W1 and N , the north
pole. By symmetry, the same holds for χ(w2,∞) and taking the limit of the above expression
again as |w1| → ∞ gives 0 which once again agrees with the Euclidean distance being zero
as the second point approaches the north pole. This establishes the chordal distance between
any two points in C∞, given by

χ(w1, w2) :=



2|w1−w2|√
1+|w1|2

√
1+|w2|2

if w1, w2 ∈ C
2√

1+|w1|2
if w1 ∈ C and w2 = ∞

2√
1+|w2|2

if w2 ∈ C and w1 = ∞

0 if w1, w2 = ∞.

It is clear that this defines a metric on C∞, since it is precisely defined as the distance between
the representatives on S2 ⊂ R3, and we know that the Euclidean metric in R3 is a metric.
Thus all the properties of metrics are directly inherited from this by definition.

We make the following observations. Since S2 is a closed and bounded subset of R3, it is
compact, so the metric space (C∞, χ) is a compact metric space. The metric is bounded by
χ(w1, w2) ≤ 2 since no two points on the sphere can be further apart than the length of the
diameter. Distances between two points on the sphere are invariant under rotations about the
origin, and reflections in planes which bisect the sphere along its great circles1, so χ is also
invariant under these. The map w 7→ 1/w corresponds to such a reflection in the rs-plane,
and so

χ(w1, w2) = χ(1/w1, 1/w2) for all w1, w2 ∈ C∞. (5.1)

Here we allow 1/∞ = 0 and 1/0 = ∞ in the way which intuitively follows, such that

χ(w, 0) = χ(1/w,∞) for all w ∈ C \ {0}.

This can also be easily verified algebraically via direct substitution. In order for us to con-
sistently extend notions of convergence from C to C∞, we must confirm that the metric χ
is suitably consistent with the Euclidean metric when we are considering subsets of C. Two
metrics are said to be equivalent if they induce the same topology. This means that a set is
open with respect to the Euclidean metric if and only if it is open with respect to χ. We saw
an example of this in Lemma 2.2 where instead we showed that convergence in one metric
was equivalent to convergence in the other. We establish the topologies align on C from [8].

Proposition 5.2. A set U ⊂ C∞ is open in (C∞, χ) if and only if

(i) U ∩ C is open in the Euclidean metric.
(ii) If ∞ ∈ U , then there exists some r > 0 such that {z ∈ C : |z| > r} ⊂ U .

Proof. Here the first condition is asserting the topological equivalence on C. The second
clarifies that sets including ∞ are open in C∞ if and only if they contain some Euclidean
neighbourhood of ∞, such that, for example, D ∪ {∞} is not open in C∞.

1Circles on the surface of the sphere with maximal radius, such that their radius is shared with that of
the sphere. Here, these are all the circles given by the sphere intersected with planes which include the origin
(0, 0, 0), since this is the centre of the sphere.
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Condition (i) clearly follows from the fact that P |C : C → S2 \ {N} is a homeomorphism. A
set U ⊂ C∞ is open with respect to χ if and only if the set P (U) is open in S2 as we have
precisely defined our topology on C∞ to align with this. It is clear that P (U) is open in S2

if and only if P (U) \ {N} is open in S2 \ {N}. Thus P−1|C(P (U) \ {N}) = U ∩ C is open in
C, as homeomorphisms map open sets to open sets.

If some U ⊂ C∞ with ∞ ∈ U is open in C∞ then it must contain some neighbourhood of ∞

Bχ(∞, δ) = {z ∈ C∞ | χ(∞, z) < δ} ⊂ U.

We can assume without loss of generality that δ < 2, and thus in this ball

χ(z,∞) =
2√

1 + |z|2
< δ ⇐⇒ 4

δ2
< 1 + |z|2 ⇐⇒ |z| >

√
4

δ2
− 1.

This final expression is real and positive due to requiring δ < 2. Thus condition (ii) holds as{
z ∈ C : |z| >

√
4

δ2
− 1

}
⊂ U.

Now we assume conditions (i) and (ii) and deduce that U is open. Since P |C is a homeomor-
phism, P |C(U ∩ C) is open in S2 \ {N}. If ∞ /∈ C∞ then we can directly deduce this is open
in S2 and thus U is open in C∞ as required. Alternatively if ∞ ∈ U then there exists

{z ∈ C : |z| > r} ⊂ U =⇒ Bχ

(
∞,

2√
1 + r2

)
⊂ U

so a Euclidean neighbourhood of infinity implies a spherical neighbourhood as required.

This establishes the topological equivalence of χ and the Euclidean metric on C. It is inter-
esting to note that in the above proof, the balls in χ directly corresponded to balls in the
Euclidean metric. This is due to the fact that the map P takes circles to circles. As a direct
result of this topological equivalence, we can always find open balls of each type inside one
another. We state this explicitly as a lemma in a similar formulation to [7].

Lemma 5.3. (a) If a ∈ C, and r > 0 is given, there exits ϵ > 0 such that Bχ(a, ϵ) ⊂ B(a, r).
(b) If a ∈ C, and ϵ > 0 is given, there exits r > 0 such that B(a, r) ⊂ Bχ(a, ϵ).
(c) If ϵ > 0 is given, there exists r > 0 such that {z ∈ C : |z| > r} ⊂ Bχ(∞, ϵ).
(d) If r > 0 is given, there exists ϵ > 0 such that Bχ(∞, ϵ) ⊂ C∞ \ {z ∈ C : |z| ≤ r}.

Proof. The first two statements follow directly from Proposition 5.2 condition (i), as the
respective balls are open in the other metric, and thus the point a must have an open neigh-
bourhood around it (which can be made arbitrarily small to not include ∞ in the second
case). The third and fourth conditions follow directly from Proposition 5.2 condition (ii).

It can be seen that the first two conditions are an equivalent formulation of the topological
equivalence of χ to the Euclidean metric on C, as the collection of open balls forms a basis
for a topological space. This establishes all notions of convergence in either metric restricted
to compact sets in C as equivalent, as being able to find a δ which works in one metric now
directly allows us to find a δ which works in the other metric. We have now established
machinery to rigorously deal with the point ∞ as if it were any other point and verified that
it extends our previous formulations without contradiction. We are ready to begin dealing
with notions of convergence for meromorphic functions.
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5.2 The space of meromorphic functions

We have now established a metric suitable for dealing with functions taking values in C∞.
Our functions will now be of the form

f : (Ω, | · |R2) → (C∞, χ).

We extended our codomain with the goal of dealing with meromorphic functions and defining
a sensible notion of normality for families of this type. Since the most general case we have
seen was for continuous families in Chapter 2, we begin by confirming that meromorphic
functions are spherically continuous. We will use the term spherically when referring to all
notions of convergence and continuity of function in the metric χ. In this section we follow
and elaborate on ideas from [1, 7, 11, 13, 29].

Proposition 5.4. If a function f is meromorphic on domain Ω, then f is spherically con-
tinuous on Ω.

Proof. We know a meromorphic function f is holomorphic except on a set of isolated points
Pf , the poles of f . Fix ϵ > 0 and let z0 ∈ Ω be a point such that f(z0) ̸= ∞ and instead
f(z0) = a for some a ∈ C. By Lemma 5.3 there exists r > 0 such that B(a, r) ⊂ Bχ(a, ϵ).
Then, since holomorphic functions are continuous, there exists an δ > 0 such that for all
z ∈ B(z0, δ). we have f(z) ∈ B(a, r) ⊂ Bχ(a, ϵ). Thus f is spherically continuous at z0.

Alternatively, we could have a pole at z0, such that f(z0) = ∞. By Lemma 5.3, there exists
r > 0 such that {z ∈ C : |z| > r} ⊂ Bχ(∞, ϵ). We know that the poles of a meromorphic
function are isolated, and also that z0 is a pole if and only if |f(z)| → ∞ as z → z0. Due
to this convergence, there must exit δ > 0 such that for all z ∈ B(z0, δ) \ {z0}, we have
|f(z)| > r. Thus for z ∈ B(z0, δ) \ {z0} we have f(z) ∈ {z ∈ C : |z| > r} ⊂ Bχ(∞, ϵ). For
z = z0, f(z0) = ∞ ∈ Bχ(∞, ϵ) and so for all z ∈ B(z0, δ) we have f(z) ∈ Bχ(∞, ϵ). Thus f is
spherically continuous at z0. This concludes the proof, as we have shown that f is spherically
continuous everywhere on Ω.

We are now ready to consider the space of meromorphic functions. We also redefine the space
of holomorphic functions with this new metric.

M(Ω) := {f : (Ω, | · |R2) → (C∞, χ) | f meromorphic} .

By the above proposition, M(Ω) ⊂ C(Ω,C∞). We once again use the metric ρ(f, g) from
Chapter 2, where in this case (Y, d) = (C∞, χ). We can now also think of the space H(Ω) by

H(Ω) := {f : (Ω, | · |R2) → (C∞, χ) | f holomorphic} .

Such that H(Ω) ⊂ M(Ω), with functions in H(Ω) being meromorphic functions that never
assume the value ∞. This is the same set we defined before but equipped with a different
metric. It is still of the same form ρ(f, g), but this is induced by χ rather than the Euclidean
metric. We will call the specific case of convergence spherically uniformly on compact subsets
of Ω normal convergence.

Definition 5.5. We say a sequence of meromorphic functions on Ω is normally convergent if
it converges spherically uniformly on each compact subset X ⊂ Ω. A family of meromorphic
functions on Ω is normal if every sequence fn has a normally convergent subsequence with
limit f ∈ M(Ω). This is often referred to as the classical definition of normality.
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It is not at all clear that M(Ω) is a closed subspace of C(Ω,C∞), as we do not know that
normal convergence preserves meromorphicity. In fact, it does not as we see returning to the
functions from Example 3.11.

Example 5.6. Let {fn} ⊂ M(Ω) be a sequence of functions defined by fn(z) ≡ n on Ω.
Then for all z ∈ Ω,

χ(fn(z),∞) =
2√

1 + n2
→ 0 as n→ ∞.

This implies fn converges spherically uniformly to a constantly infinite function on Ω, and
thus converges normally to this. This limit function is certainly not meromorphic. This
was somewhat to be expected - considering ∞ as just another point in the codomain means
that by our definitions, this really is just another continuous function in C(Ω,C∞). However,
this could be a more general issue if the ways in which limit functions of holomorphic and
meromorphic functions can assume infinity is not well-behaved.

Recall that we need our space of functions to be complete in order to apply Arzelà–Ascoli.
Thus, we would like that the spacesH(Ω) andM(Ω) are complete metric spaces. Although the
above example shows this not to be the case, it turns out the limit function being constantly
infinite is the worst that can happen.

In a similar fashion to Hurwitz’s theorem restricting the way in which compactly convergent
holomorphic limit functions can assume a certain value, we will now prove a theorem which
restricts how normally convergent meromorphic limit functions can assume the value ∞. We
first observe a simple fact due to the inversion property (5.1) of the metric χ.

Lemma 5.7. Let {fn} ⊂ M(Ω) be a sequence of meromorphic functions. Then fn → f
normally on Ω if and only if 1/fn → 1/f normally on Ω.

Proof. For all n ∈ N and z ∈ Ω, by the inversion property (5.1), we have that χ(fn(z), f(z)) =
χ(1/fn(z), 1/f(z)). Thus any δ which gives spherical uniform convergence on some compact
X ⊂ Ω for fn also gives spherical uniform convergence here for 1/fn. The same applies in the
other direction equivalently.

Theorem 5.8. [1, 7, 11] Let {fn} ⊂ M(Ω) be a normally convergent sequence of meromorphic
functions with limit fn → f . Then either f ∈ M(Ω), or f(z) ≡ ∞ on Ω.
Let {fn} ⊂ H(Ω) be a normally convergent sequence of holomorphic functions with limit
fn → f . Then either f ∈ H(Ω), or f(z) ≡ ∞ on Ω.

Proof. Consider fn meromorphic, converging normally to f . We know that we must at least
have f ∈ C(Ω,C∞), as normal convergence is a form of compact convergence and this preserves
continuity. Assume f is not identically ∞ and let z0 be a point at which f is finite, with
|f(z0)| = M . We will first establish that there is some neighbourhood around z0 on which f
is holomorphic. By Lemma 5.3, let ϵ > 0 be such that

Bχ(f(z0), ϵ) ⊂ B(f(z0),M). (5.2)

By convergence, there exists N ∈ N such that for all n ≥ N , we have χ(fn(z0), f(z0)) < ϵ/2.
The family

{f, f1, f2, ...} ⊂ C(Ω,C∞)
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is normal and therefore equicontinuous by Arzelà–Ascoli. Thus there exists δ > 0 such that
for z ∈ B(z0, δ), we have χ(fn(z), fn(z0)) < ϵ/2. By the triangle inequality, for z ∈ B(z0, δ)
and n ≥ N we have

χ(fn(z), f(z0)) ≤ χ(fn(z), fn(z0)) + χ(fn(z0), f(z0)) < ϵ/2 + ϵ/2 = ϵ.

Thus fn(z) is inside the χ-ball from (5.2), so by the triangle inequality in the Euclidean metric,
for all z ∈ B(z0, δ) and n ≥ N ,

|fn(z)| ≤ |fn(z)− f(z0)|+ |f(z0)| ≤ 2M. (5.3)

By the formula for the metric χ, for z and n as above we have

2|fn(z)− f(z)|√
1 + (2M)2

√
1 + (2M)2

=
2

1 + 4M2
|fn(z)− f(z)| ≤ χ(fn(z), f(z)),

where we have maximised the denominator such that the left expression is bounded above by
the value of χ. Thus χ(fn(z), f(z)) → 0 uniformly implies |fn(z) − f(z)| → 0 uniformly on
this ball, so we have Euclidean convergence uniformly on B(z0, δ). By (5.3) the tail end of
the sequence of fn is bounded on this ball, so they must be holomorphic near z0 for suitably
large n ≥ N . Thus by Euclidean compact convergence the limit function f must also be
holomorphic on this neighbourhood of z0. Since z0 was chosen arbitrarily, it follows that the
limit function is holomorphic on a neighbourhood of each point z ∈ Ω at which it is finite,
and thus f is holomorphic on the subset of Ω for which |f(z)| <∞.

Now consider a point z0 ∈ Ω where f(z0) = ∞. We know 1/fn → 1/f normally, and from the
above argument, 1/f is holomorphic on the subset of Ω for which |1/f(z)| ≤ ∞. Thus 1/f is
certainly holomorphic everywhere it is zero. Since the zeros of a holomorphic function must
be isolated, the zeros of 1/f are isolated and thus so are the z values for which f(z) = ∞.
Thus f is holomorphic except on a set of isolated points where it takes the value ∞. Since we
have spherical convergence, we know these must be poles, implying f is meromorphic on Ω.

Now consider the second statement, with holomorphic fn normally convergent to f . Observe
that 1/fn is nowhere zero on Ω, since this would contradict the holomorphicity of fn. By
Hurwitz’s theorem, 1/f is nowhere zero or identically zero. If 1/f ≡ 0 on Ω, then f ≡ ∞ on
Ω. If 1/f ̸= 0 everywhere on Ω then |f(z)| <∞ everywhere on Ω, so by the above argument
f is holomorphic everywhere on Ω as required.

Corollary 5.9. The subspaces of C(Ω,C∞) given by H(Ω) ∪ {∞} and M(Ω) ∪ {∞} are
complete metric spaces.

Example 5.10. Returning to the functions from our motivating example, let F ⊂ M(Ω) be
the family

F = {fn(z) ≡ n | n ∈ N}.

We have shown these are normally convergent with limit fn → f ≡ ∞. However, F is not
normal in M(Ω), as the limit function f ≡ ∞ simply does not exist inside this space. F is
normal viewed as a family in M(Ω) ∪ {∞} or in C(Ω,C∞), as these contain the limit point.
Although we need not contain the limit function in the family, it must be in the space the
functions are considered in.

This is analogous to the set B = {(x, y) ∈ X : 0 < x2 + y2 < 1} viewed as a subset of either
X = R2 or X = R2 \ {0}. In the first case X = R2, B is the closed disc, which we know to be

32



compact, with any open cover admitting a finite subcover. In the case X = R2 \ {0} however,
the closure B in X would not include 0, and none of our open covering sets can contain 0.
Taking an infinite collection of balls all tangent around 0 as part of the cover would mean
that any finite cover would miss some points very close to 0. Thus B is not relatively compact
in this X.

The point 0 in this example has the same role as ∞ with F . The limit point simply does
not exist in M(Ω), so F is not relatively compact in M(Ω). With this in mind, when we
talk about a family F ⊂ M(Ω), we will say F is normal if it is normal in the complete space
M(Ω) ∪ {∞}.

5.3 Spherical derivatives

We now study the spherical derivative of a meromorphic function. This will be the central
object used in the formulation of a normality condition for meromorphic families given in the
next section. The spherical derivative is a powerful tool which can be used to calculate the
spherical length of differentiable curves in C∞. In this section, we make use of results from
[7, 11].

We know that for a differentiable curve γ ⊂ C in the plane parametrized by γ(t) for 0 ≤ t ≤ 1,
the Euclidean length of the curve is given by

L(γ) :=

∫
γ
|dz| =

∫ 1

0
|γ′(t)|dt.

Furthermore, by the chain rule, the length of the image curve f(γ) under holomorphic f is

L(f ◦ γ) :=
∫
γ
|f ′(z)||dz| =

∫ 1

0
|f ′(γ(t))||γ′(t)|dt.

We would like a similar formula for the spherical length of a path on the Riemann sphere.
We derive an infinitesimal form of the chordal metric by considering the limit

lim
h→0

χ(z + h, z)

|h|
= lim

h→0

2|z + h− z|
|h|
√
1 + (z + h)2

√
1 + z2

=
2

1 + z2
.

Since the surface of a sphere is locally Euclidean, as we consider a smaller and smaller distance
on the sphere’s surface, this is approximated arbitrarily well by the chordal distance. It follows
that for a differentiable curve γ ⊂ C∞ on the Riemann sphere, the spherical length is given
by

LS(γ) =

∫
γ

2

1 + z2
|dz| =

∫ 1

0

2|γ′(t)|
1 + |γ(t)|2

dt.

Example 5.11. Let γ be the circle along the real line in C∞, passing through ∞, 1, −1 and
0, parametrized by

γ(t) = log

(
t

1− t

)
γ′(t) =

1

t(1− t)
for 0 ≤ t ≤ 1.

Then we expect LS(γ) to be 2π as it is the circumference of a circle with radius 1. We see
that this is indeed the case.

LS(γ) =

∫ 1

0

2
∣∣∣ 1
t(1−t)

∣∣∣∣∣∣1 + log2
(

t
1−t

)∣∣∣dt
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Substituting

u = log

(
t

1− t

)
du =

dt

t(1− t)
t→ 0 =⇒ u→ −∞ t→ 1 =⇒ u→ ∞.

LS(γ) =

∫ ∞

−∞

2du

1 + u2
= 2arctanu

∣∣∣∞
−∞

= 2π as required.

Returning to our previous equation, by the chain rule, we see that the spherical length of an
image curve f(γ) under meromorphic f is given by

LS(f ◦ γ) :=
∫
γ

2|f ′(z)|
1 + |f(z)|2

|dz| =
∫ 1

0

2|f ′ ◦ γ(t)||γ′(t)|
1 + |f ◦ γ(t)|2

dt.

It is not immediately clear that the integrand is defined where f has a pole, but we shall see
that this is indeed the case. We define the spherical derivative f#(z) of f to be such that

LS(f ◦ γ) :=
∫
γ
2f#(z)|dz|. (5.4)

Definition 5.12. Let f ∈ M(Ω). We define the spherical derivative of meromorphic f by

f#(z0) :=
1

2
lim
z→z0

χ(f(z), f(z0))

|z − z0|

=
1

2
lim
z→z0

2|f(z)−f(z0)|
|z−z0|√

1 + |f(z)|2
√
1 + |f(z0)|2

= lim
z→z0

|f ′(z)|
1 + |f(z)|2

Here we introduce the factor of 1/2 to cancel with the leading constant 2 on the chordal metric.
This is for simplicity of future calculations, as it is unnecessary clutter for our purposes2.

It is clear to see that f# is well-defined on the set of points for which f is holomorphic.
However, if z0 is a pole, then both f and f ′ approach ∞ in the limit. The limit for f# is
finite, however. To see this, recall that if f has a pole of order n at z0, then we can find δ > 0
such that f(z) can be written as

f(z) =
g(z)

(z − z0)n
g(z) holomorphic and g(z) ̸= 0 for |z − z0| < δ.

On this punctured neighbourhood, f ′ in terms of g is given by

f ′(z) =
g′(z)(z − z0)

n − g(z)n(z − z0)
n−1

(z − z0)2n
.

Returning to the spherical derivative we can see that

f#(z0) = lim
z→z0

|f ′(z)|
1 + |f(z)|2

= lim
z→z0

∣∣g′(z)(z − z0)
n − g(z)n(z − z0)

n−1
∣∣

|z − z0|2n + |g(z)|2

=
1

|g(z0)|
∈ R>0 if n = 1 or 0 if n > 1,

2In fact, many texts define the chordal metric without the leading 2 by instead projecting onto a sphere
with radius 1/2, centred around (0, 0, 1/2). This was not done here for simplicity of derivation.
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where we have used that g(z) ̸= 0 to assert that the value is a positive real. Thus, f# is
well-defined and finite at each pole z0, so is well-defined and finite on all Ω.

Proposition 5.13. Let f ∈ M(Ω). Then f# = (1/f)# for all z ∈ Ω (this is the spherical
derivative of 1/f and not the reciprocal of the spherical derivative).

Proof. This is another consequence of the inversion property of the chordal metric. Looking at
the definition of the spherical derivative, to obtain (1/f)#(z0) we would replace the numerator
with χ(1/f(z), 1/f(z0)). But we know by (5.1) that this is equal to χ(f(z), f(z0)).

In line with this, we extend our definition to include the spherical derivative of a constantly
infinite function f ≡ ∞ by f# = (1/f)# ≡ 0, such that it behaves as any other constant
function would.

Taking some z = z0 + δ, we see that f# measures the change in spherical distance between
the values of f from z to z0. Taking δ → 0, therefore, gives us a measure of the ”rate of
expansion” of f on the surface of the Riemann sphere at z0. Note that by the way we have
defined this, it is a strictly non-negative quantity.

Lemma 5.14. [11] Let {fn} ⊂ M(Ω) be a normally convergent sequence of meromorphic

functions with limit fn → f . Then the sequence of spherical derivatives f#n → f# converge
compactly on Ω.

Proof. Let z ∈ Ω. By Theorem 5.8, at least one of f or 1/f must be holomorphic on some
ball B(z, δ) ⊂ Ω, since either f is meromorphic or f ≡ ∞. If f is holomorphic at z, then for
some N ∈ N suitably large, all fn are holomorphic here (and so are their derivatives). On
this ball, fn → f and f ′n → f ′ uniformly by topological equivalence. Thus the quotient

f#n =
|f ′n|

1 + |fn|2
→ |f ′|

1 + |f |2
= f#

uniformly also on this ball. Since z was arbitrary, then we have local uniform convergence
and thus compact convergence of f#n → f#. Alternatively, if 1/f is holomorphic at z then

the same argument with (1/fn)
# gives f#n = (1/fn)

# → (1/f)# = f# uniformly on every
compact subset of Ω.

5.4 Marty’s theorem

We now prove an equivalent condition for the normality of meromorphic families, established
by Frédéric Marty in his PhD thesis in 1931 under supervision from Montel [20]. As we
discussed at the beginning of the chapter, (C∞, χ) is a compact metric space and so any set
is relatively compact, meaning that condition (ii) of Arzelà–Ascoli is trivially fulfilled for any
F . It follows that the normality of meromorphic families in the classical sense is equivalent to
spherical equicontinuity, Arzelà–Ascoli condition (i). Note that as we discussed in Example
5.10, in order to apply Arzelà–Ascoli we must consider our families as from the larger, complete
space M(Ω)∪ {∞}. Equicontinuity is harder to check in the chordal metric, however. Marty
showed that having locally bounded spherical derivatives is equivalent to equicontinuity and
thus normality. The proof presented here is Marty’s original proof and is very geometric in
nature.
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Theorem 5.15 (Marty’s Theorem). A family F ⊂ M(Ω) is normal in M(Ω) ∪ {∞} if and
only if the family of spherical derivatives

{
f# : f ∈ F

}
is locally bounded.

Proof. Assume the spherical derivatives are locally bounded. Let z0 ∈ Ω and r > 0 be
such that B(z0, r) ⊂ Ω. Let z1 ∈ B(z0, r) and let γ be the differentiable curve given by
the Euclidean line (in C) between z0 and z1. Observe that the length of any image curve
f(γ) ⊂ C∞ between f(z0) and f(z1) for some f ∈ F , viewed on the surface of the sphere S2,
is bounded below by the shortest Euclidean distance (in R3) between these two points, see
Figure 5.2.

Figure 5.2: An image curve f(γ) on the surface of the sphere.

This shortest Euclidean distance is given precisely by the chordal metric and thus we have

χ(f(z0), f(z1)) ≤ LS(f ◦ γ) =
∫
γ
2f#(z)|dz|

By local boundedness of the derivatives on this ball, there existsM > 0 such that 2f#(z) ≤M
for all z ∈ B(z0, r) and f ∈ F . This gives an upper bound for the integral by∫

γ
2f#(z)|dz| ≤

∫
γ
M |dz| =M |z0 − z1|

=⇒ χ(f(z0), f(z1)) ≤M |z0 − z1|

Since M is chosen independent of f , this gives equicontinuity at each z0 ∈ Ω with δ = ϵ/M
for any ϵ > 0 given. Thus F is normal by the Arzelà–Ascoli theorem.

To prove the converse, assume the spherical derivatives are not locally bounded. Then for
some compact X ⊂ Ω, we can find a sequence of functions fn(z) ∈ F and a sequence of

points zn ∈ X such that f#n (zn) → ∞. It is clear that no subsequence of these spherical
derivatives can converge in a Euclidean sense on X. Thus by the contrapositive to Lemma
5.14, F contains a sequence which does not admit a normally convergent subsequence and
thus F is not normal.

The similarity of Marty’s theorem to Montel’s theorem is evident - both relate normality to
local boundedness in some way. Marty’s theorem is more general, as it applies to any family of

36



meromorphic functions not just holomorphic functions. We can of course use Marty’s theorem
on the space of holomorphic functions, but we must remember to make the space complete
by considering H(Ω) ∪ {∞}. Montel’s theorem only applies to H(Ω) viewed with Euclidean
metric on the codomain, which is already complete without ∞.

Example 5.16. Consider the family of meromorphic functions F ⊂ M(D) given by

F =

{
f(z) =

1

zt
: t ∈ (1, 2)

}
.

These are the functions from Example 3.9, which have been extended to be meromorphic on
D. Consider the spherical derivative of a general f ∈ F , given by

f#(z) =
|f ′(z)|

1 + |f(z)|2
=

t|z|−t−1

1 + |z|−2t
=

t|z|t−1

|z|2t + 1
≤ 2|z|0 = 2.

Here we have used that t < 2, |z|2t + 1 ≥ 1 and |z|t−1 ≤ |z|0 for z ∈ D and 0 < t − 1 < 1.
Thus the spherical derivatives are locally bounded by |f#(z)| ≤ 2 on D. By Marty’s theorem,
F is normal.

Example 5.17. Consider the family of holomorphic functions F ⊂ H(D) given by

F = {f(z) = nz : n ∈ N} .

We saw these functions defined on (0, 1) were not equicontinuous on R with the Euclidean
metric in Example 2.7. We might hope for better behaviour in the spherical metric but this
is not the case. The reason equicontinuity (and thus normality) failed in the Euclidean case
was that f(0) = 0 for all functions, but for any z ̸= 0, |f(z)| → ∞ as n→ ∞. We see that in
the meromorphic case, 0 causes a similar problem. Take any X ⊂ D compact which contains
0, for example {0}. A general spherical derivative is

f#(z) =
n

1 + |nz|2
f#(0) = n,

so these can be made arbitrarily large by n at z = 0. By Marty’s theorem, F is not normal.
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6 General Conditions for Normality

We are now familiar with normality for families of continuous, holomorphic and meromorphic
functions. In this chapter, we prove a powerful lemma due to Lawrence Zalcman, which
allows us to formalise a heuristic principle for when certain properties of a family imply
normality, known as Bloch’s principle. We also make use of Zalcman’s lemma to derive
Montel’s fundamental normality test for a family of holomorphic or meromorphic functions.

6.1 Normality preserving transforms of families

The following two lemmas are assumed without proof in many texts - that we can compose
families with Möbius transforms while preserving normality. I have decided to formalise this
and prove this further for any biholomorphism. These can both be somewhat intuited from
the fact that normality is a local property, Corollary 2.10.

Lemma 6.1. Let F ⊂ M(Ω) be a family of meromorphic functions, and let h : D → Ω be a
biholomorphism, D ⊂ C open. Then F is normal in M(Ω) ∪ {∞} if and only if the family

G = F ◦ h := {g = f ◦ h | f ∈ F}

is normal in M(D) ∪ {∞}.

Proof. We prove only one direction since the converse holds equivalently with the biholomor-
phism h−1. Assume F is normal and let z0 ∈ D be an arbitrary point in the domain of G, with
w0 = h(z0) ∈ Ω. We will show G is spherically equicontinuous at z0, establishing normality
(as we know Arzelà–Ascoli condition (ii) is trivially fulfilled in the chordal metric). Fix ϵ > 0.
By spherical equicontinuity of F at w0, there exists r > 0 such that for all f ∈ F and all
w ∈ Ω

|w − w0| < r =⇒ χ(f(w), f(w0)) < ϵ.

Now by continuity of h, there exists δ > 0 such that for all z ∈ D with |z − z0| < δ we have
|h(z)− h(z0)| < r. Since h(z) ∈ Ω for all z ∈ D, it follows that for all f ∈ F and all z ∈ D

|z − z0| < δ =⇒ χ(f(h(z)), f(h(z0))) < ϵ,

giving spherical equicontinuity of G at z0. It follows that G is normal in M(D) ∪ {∞}.

Each of the families of all meromorphic functions on some domain is the same family if
viewed under the equivalence class of biholomorphisms on the domain, for any h as above.
This lemma tells us that normality is an invariant of this equivalence. Thus, it is not the
behaviour of specific functions on a specific region of C∞ which gives rise to the normality
of this class, but rather the disparity between how the functions themselves relate to each
other on a generalised domain that is the equivalence class of biholomorphically equivalent
domains.

We now prove a similar lemma, this time composing with a biholomorphism on the codomain
of the functions. This is more complex, as we do not know that the values f(z0), f ∈ F are
all in the same neighbourhood of the sphere for fixed z0, so upon passing these values into
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a biholomorphism we would need uniform continuity of the biholomorphism to apply a com-
position continuity argument for equicontinuity at z0 as in the previous lemma. Instead, we
consider the images of general compact subsets of the domain itself and use this compactness
to give uniform continuity of the biholomorphism. This combined with the normality of F
will in turn help us show that every subsequence of the transformed family has a normally
convergent subsequence. Inspiration for this proof comes from [19].

Lemma 6.2. Let F ⊂ M(Ω) be a family of meromorphic functions with image inside W ⊂
C∞ open, such that for all f ∈ F we have f(Ω) ⊂ W ⊂ C∞. Let h : W → D be a
biholomorphism. Then F is normal in M(Ω) ∪ {∞} if and only if the family

G = h ◦ F := {g = h ◦ f | f ∈ F}

is normal in M(Ω) ∪ {∞}.

Proof. As before, we only prove one direction as the converse is equivalent to using the
biholomorphism h−1. Assume F is normal. A general sequence in G is of the form h ◦ fn,
fn ∈ F . By normality of F , the sequence fn has a normally convergent subsequence fnk

→ f .
We claim that the sequence h ◦ fnk

converges normally to h ◦ f .

Let X ⊂ Ω be compact and fix ϵ > 0. Choose r > 0 such that the ”thickening” of f(X) by r,
given by

f(X)r := {w ∈ C∞ | χ(w,w0) ≤ r for some w0 ∈ f(X)}

is contained by f(X)r ⊂W . X is compact in C, so f(X) is compact in C∞ by continuity. W
is open and contains the closed f(X), so f(X) is therefore bounded away from the boundary,
allowing such an r > 0 to exist (or there is no boundary in the case W = C∞, but in this
case, it is trivially contained inside for any choice of r). Observe that since f(X) is compact
in C∞, f(X)r is also. Since continuous functions on compact sets are uniformly continuous,
there exists δ > 0 such that for all w1, w2 ∈ f(X)r

χ(w1, w2) < δ =⇒ χ(h(w1), h(w2)) < ϵ. (6.1)

Now by normal convergence of fnk
, there exists some N ∈ N such that for all k ≥ N and all

z ∈ X, we have
χ(fnk

(z), f(z)) < min{δ, r}.

Thus for k ≥ N the images fnk
(X) ⊂ f(X)r. But now by (6.1) with w1 = fnk

(z), w2 = f(z)
and the above inequality, for all k ≥ N and all z ∈ X we have

χ(h ◦ fnk
(z), h ◦ f(z)) = χ(h(fnk

(z)), h(f(z))) < ϵ.

This gives spherical uniform convergence h ◦ fnk
→ h ◦ f on an arbitrary compact set X ⊂ Ω.

Thus h ◦ fnk
→ h ◦ f normally on Ω, and G is normal in M(Ω) ∪ {∞}.

Note that all the properties used in this proof could be significantly generalised. We only made
use of the homeomorphic nature of h to deduce equivalence, we did not need its biholomorphic
properties. Furthermore, the functions could have all come from C(Ω,C∞). We state and
prove it in this format for the simplicity of our future application.

Corollary 6.3. Let ψ : C∞ → C∞ be a Möbius transform. Then a family F ⊂ M(Ω) is
normal in M(Ω) ∪ {∞} if and only if the family ψ ◦ F is.
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Example 6.4. Let D ⊂ C be a simply connected domain which is not all of C, and let
F ⊂ H(Ω) be all the functions of the form

F := {f ∈ H(Ω) | f : Ω → D}.

By the Riemann mapping theorem, there exists a biholomorphism h : D → D. Then by
Lemma 6.2, F is normal in H(Ω) ∪ {∞} if and only if h ◦ F is. But the family h ◦ F maps
to the unit disc so is trivially bounded and thus by Montel’s theorem, h ◦F is normal viewed
through the Euclidean metric. This implies normality of h◦F in H(Ω)∪{∞}, so F is normal.

6.2 Bloch’s heuristic principle

We now study a heuristic principle for the normality of a family, attributed to the French
mathematician André Bloch. Bloch had a tragic life, fighting in World War 1 for several
months before being injured and declared unfit to return to fighting. In 1917, at the age of
22, he murdered his brother, aunt and uncle. He was then confined to a psychiatric hospital
from which he completed most of his contributions to mathematics, staying up to date on
new research through correspondence with a number of academics on the outside [23]. The
principle, roughly speaking, states that

”A family of holomorphic [meromorphic] functions which have a property P in common in a
domain D is (apt to be) a normal family in D if P cannot be possessed by non-constant entire
[meromorphic] functions in the finite plane.” [15]

We see that this seems to align with Montel’s theorem from Chapter 3. Consider the property

The family F is uniformly bounded on Ω.

We know by Liouville’s theorem that no non-constant entire function can be bounded. Indeed
by Montel’s theorem, we know F is normal so the principle holds. However, it is ambiguous
as stated. Rephrase the above as

Each function in F is bounded on Ω.

Once again, no non-constant entire function satisfies this, however the family F ⊂ H(D)

F = {f : D → C | f(z) = nz}

is not normal on D as we saw in Example 5.17. To formalise this principle, we need to be more
precise in what a ”property” can be. This was achieved in 1975 by Lawrence Zalcman, making
use of a lemma which we now prove. Zalcman’s lemma also provides further characterisation
of normality. In this section, we follow the proof from [5, 11, 38].

Lemma 6.5 (Zalcman’s Lemma). Let F ⊂ M(Ω) be a family of meromorphic [holomorphic]
functions on a domain Ω. F is not normal if and only if there exist

(i) a sequence of points zn → z0 ∈ Ω
(ii) a sequence of functions fn ∈ F
(iii) a sequence of real numbers ρn > 0 with ρn → 0
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such that the functions gn(ζ) = fn(zn+ρnζ) converge normally to a non-constant meromorphic
[entire] function g(ζ) on C, satisfying g#(ζ) ≤ 1 for all ζ ∈ C.

Proof. First, assume F is not normal. Then by Marty’s theorem, there exists a sequence of
functions {fn} ⊂ F , some compact subset X ⊂ Ω and a sequence of points wn → w ∈ X

for which f#n (wn) → ∞. By Lemma 6.1 we can assume without loss of generality1 that
wn → 0 ∈ Ω and that X is the closed disc {z : |z| ≤ 1} = D ⊂ Ω. By redefining wn to be the
tail end of the sequence we can assume it sits inside D also.

Define
Mn := (1− |zn|2)f#n (zn) = max

|z|≤1
(1− |z|2)f#n (z).

Where |zn| ≤ 1 is the sequence of points which maximises this expression for each n. This
maximum must exist since D is compact, so there must be a point for which the supremum
is attained. This must be finite for each Mn, since we know the spherical derivative is well-
defined and finite on the entire domain, including at any poles of f . Observe that Mn → ∞
since f#n (wn) → ∞, so picking zn = wn instead would give ∞ as a lower bound for the limit.
Define

ρn := 1/f#n (zn) =
1− |zn|2

Mn
. (6.2)

We see that as n→ ∞, ρn → 0 since 1− |zn|2 is bounded and Mn → ∞.

0 ≤ ρn ≤ ρn
1− |zn|2

=
1

Mn
→ 0.

Observe also that ρn > 0, as ρn = 0 would imply f#n (zn) = ∞, which is impossible for a
meromorphic function. We now have a sequence of points zn, a sequence of functions fn ∈ F
and a sequence of reals ρn > 0 as specified. Consider the limit function created. Since all our
functions fn are defined on the closed disc D ⊂ Ω, then the functions

gn(ζ) := fn(zn + ρnζ)

are defined when |zn + ρnζ| < 12. The argument of fn is merely a linear transformation from
fn(ζ), so these gn are meromorphic on D. By the triangle inequality, we attain this when
|zn|+ ρn|ζ| < 1, giving

|ζ| < 1− |zn|
ρn

=
Mn

1 + |zn|
:= Rn.

We can clearly see this Rn → ∞ so the functions gn are eventually defined on any compact
subset of C for suitably large n. We fix ζ in some arbitrary compact set here by |ζ| ≤ R < Rn

for some R. We want to show that the spherical derivatives of the sequence {gn} are uniformly
bounded on this general compact disc of radius R, then we can apply Marty’s theorem to
deduce the {gn} form a normal family. First, by the chain rule, we attain

g#n (ζ) =
|g′n(ζ)|

1 + |gn(ζ)|2
=

ρn|f ′n(zn + ρnζ)|
1 + |fn(zn + ρnζ)|2

= ρnf
#
n (zn + ρnζ). (6.3)

1Consider a biholomorphism which translates Ω so w = 0 then find a neighbourhood B(0, r) and scale by
a factor 2/r so the closed unit disc D is contained inside.

2Of course, they are defined elsewhere in a transformed Ω but we do not know anything about Ω so we only
make use of the behaviour on the disc.
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Using this formulation of g#n (ζ) along with (6.2) and the triangle inequality, we find

g#n (ζ) =
ρnMn

1− |zn + ρnζ|2

=
1− |zn|2

1− |zn + ρnζ|2

≤ 1− |zn|2

1− (|zn|+ ρn|ζ|)2

=
1 + |zn|

1 + |zn|+ ρn|ζ|
· 1− |zn|
1− |zn| − ρn|ζ|

.

Here we can see that the first term is uniformly bounded above by 1 since the denominator
is larger. For the second term, observe that for fixed R,

1− |zn|
1− |zn| − ρn|ζ|

≤ 1− |zn|
1− |zn| − ρnR

→ 1

as n → ∞ since ρn → 0. Thus we can uniformly bound the spherical derivatives {g#n (ζ)}
for |ζ| ≤ R. By Marty’s theorem, {gn} is a normal family on |ζ| < R. By replacing fn
with a suitable subsequence, we have that the sequence of gn(ζ) is normally convergent to
some limit g(ζ) defined on all of C since R was arbitrary. The gn are either meromorphic
or holomorphic, so Theorem 5.8 tells us either g(ζ) is also meromorphic or holomorphic
respectively, or identically g(ζ) ≡ ∞. By (6.3) and (6.2), the spherical derivative

g#n (0) = ρnf
#
n (zn) = 1

independent of n so taking n → ∞ gives g#(0) = 1, so g cannot be constant (or constantly
infinity). Thus g(ζ) is a non-constant meromorphic (or holomorphic) function defined on all
of C. By the above inequalities, we have that for any fixed R > 0, g#(ζ) ≤ 1 for |ζ| ≤ R so
clearly we have g#(ζ) ≤ 1 for all ζ ∈ C.

The converse is considerably simpler. We assume F is normal and deduce that any such limit
function must be constant. Indeed, suppose F is normal on Ω. Suppose there exist fn, ρn
and zn → z0 ∈ Ω as stated in the theorem, with gn(ζ) = fn(zn + ρnζ) converging normally to
some g(ζ) meromorphic on all of C. We can assume the points zn ∈ D by Lemma 6.1 and the
fact that they converge. By Marty’s theorem, there exists M > 0 such that for all z ∈ D the
spherical derivatives are bounded by f#n (z) ≤M .

Fix ζ ∈ C, then for suitably large n we have |zn + ρnζ| ≤ 1. Then by (6.3),

g#n (ζ) = ρnf
#
n (zn + ρnζ) ≤ ρnM.

Taking n → ∞ gives g#(ζ) = 0 as ρn → 0. Since ζ was fixed arbitrarily, then g must have
zero spherical derivative everywhere and thus g must be constant.

Intuitively, Zalcman’s lemma tells us that if we have a family of functions which is not normal
on some domain Ω - and thus not normal at some point in Ω by Corollary 2.10 - then
by appropriately zooming in on the region at which normality fails, the behaviour across
all the functions in the family is ”dynamic” enough that we can construct a non-constant
meromorphic function on C out of the limit. Conversely, normal families are too ”similar”
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at each point in the domain that stretching any local neighbourhood of the domain out to C
forces any limit function to be constant.

We can see some connection of how this might connect to Bloch’s principle, as it relates the
normality of a family with if a non-constant entire function can be formed from the family. We
are looking for a relation between if a non-constant function can possess a certain property
and a family possessing a certain property being normal. The way to connect these two
relations is not immediately obvious. We must first formalize the notion of a ”property” that
a family of meromorphic functions can satisfy. As established by Robinson in [26], it is useful
to distinguish functions also by the domain they are defined on.

Definition 6.6. We define a property P of meromorphic functions as a set of tuples ⟨f,Ω⟩
representing the function f with domain Ω. In this way, the elements ⟨f,Ω⟩ and ⟨f,D⟩ with
D ̸= Ω are considered distinct functions, as they have different domains. We say a family F
satisfies a property P on Ω if for all f ∈ F we have ⟨f,Ω⟩ ∈ P .

Theorem 6.7 (Bloch’s Principle). Let P be a property of meromorphic functions satisfying
the following:

(i) If ⟨f,Ω⟩ ∈ P and D ⊂ Ω, then ⟨f,D⟩ ∈ P .
(ii) If ⟨f,Ω⟩ ∈ P and ψ(z) = az + b then ⟨f ◦ ψ,ψ−1(Ω)⟩ ∈ P .
(iii) Let ⟨fn,Ωn⟩ ∈ P for a sequence of functions fn with fn → f normally on Ω, and an

increasing sequence of domains Ω1 ⊂ Ω2 ⊂ ...Ω and Ω = ∪n≥1Ωn. Then the limit
function ⟨f,Ω⟩ ∈ P also.

(iv) If ⟨f,C⟩ ∈ P then f is constant.

We will call such a property a Bloch property. Then for any domain Ω, any family of mero-
morphic functions F that satisfies P on Ω is normal on Ω.

Proof. We argue by contradiction. Assume F satisfies some property P as above on Ω, and
F is not normal. By Lemma 6.1 and property P condition (ii), we can assume D ⊂ Ω and
that F is not normal here.

Let ρn > 0, zn ∈ D, fn ∈ F , gn(ζ) = fn(zn + ρnζ), Rn = (1 − |zn|)/ρn and g(ζ) entire and
(crucially) non-constant be as in Zalcman’s lemma. By taking a subsequence, we can assume
Rn → ∞ is increasing, such that the sequence Dn = B(0, Rn) is increasing with limit C.

By property (ii) with ψ(ζ) = zn + ρnζ, we have that the functions gn satisfy P on Dn. Thus
since ⟨gn, Dn⟩ ∈ P for all n, we can apply condition (iii) to deduce that ⟨g,C⟩ ∈ P . But
condition (iv) implies g must be constant, a contradiction. Thus F is normal as required.

We see that we did not actually need condition (i) in our proof, as this is actually just a
consequence of condition (iii). It is included only for convenience. We now see how this
makes precise the example with Montel’s theorem we saw at the beginning of the chapter.

Example 6.8. Let P be the property of meromorphic functions that satisfy

⟨f,Ω⟩ ∈ P if and only if |f(z)| ≤M(f,Ω) for some constant M(f,Ω) > 0.
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We see that conditions (i), (ii) and (iv) hold, however condition (iii) does not. For example,
the functions {fn(z) = 1/z + 1/n} satisfy P on the annuli

An = {z ∈ C : 1/n ≤ |z| < 1}.

These functions are normally convergent to the meromorphic function f(z) = 1/z on the
punctured disc D \ {0} by Marty’s theorem, as the spherical derivatives satisfy

f#n (z) =
1/|z|2

1 + |1/z + 1/n|2
=

1

|z|2 + |1 + z2/n|2
≤ 1 for all n ∈ N

The sequence of annuli An have limit D \ {0} = ∪An. But the limit function f(z) = 1/z is
not bounded on D \ {0}. It follows that this property does not satisfy condition (iii) and so
P is not a Bloch property. This confirms what we expected, as we know that boundedness of
each function is not sufficient for normality, considering Example 5.17.

Example 6.9. Fix M > 0 and let P be the property of meromorphic functions that satisfy

⟨f,Ω⟩ ∈ P if and only if sup
z∈Ω

|f(z)| ≤M.

P satisfies conditions (i), (ii) and (iv). If |fn(z)| ≤ M for all n ∈ N and z ∈ Ωn increasing
with limit Ω = ∪Ωn, then any limit function also satisfies |f(z)| ≤M for all z ∈ Ω, giving us
condition (iii). Thus P is inducing a Bloch property and any family of holomorphic functions
uniformly bounded on their domain is normal. This confirms what we already know by
Montel’s theorem.

While Zalcman’s lemma gave us another equivalent condition for normality, Bloch’s principle
only tells us the sufficiency of certain conditions and does tell us anything about the other
direction - as we see here uniform boundedness is sufficient for normality, but we know that
only local boundedness is needed.

6.3 Montel’s fundamental normality test

We now study a condition for normality, given by Paul Montel in 1912 [22]. Montel’s original
proof made use of the modular lambda function, a highly symmetric holomorphic function
on the upper half-plane. Zalcman’s lemma provides a comparatively elementary proof. This
approach comes from [5, 11, 39].

Definition 6.10. We say a family F ⊂ M(Ω) omits a value a ∈ C∞ on Ω if it is not in the
image of any f ∈ F on Ω. Equivalently, the equation f(z) = a has no solutions for any f ∈ F
and z ∈ Ω.

Theorem 6.11 (Fundemental Normality Test (FNT)). Let F ⊂ M(Ω) be a family of mero-
morphic [holomorphic] functions which omits three [two] distinct values on Ω. Then F is
normal.

Proof. We only prove the meromorphic case, since the holomorphic case follows from the
meromorphic case immediately by viewing holomorphic functions as meromorphic functions
which omit ∞ everywhere.
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By Corollary 6.3 we can assume without loss of generality that the three values omitted are
0, 1,∞. We proceed by contradiction, assuming F is not normal. Then F is not normal in
some region of Ω so by Lemma 6.1 we can further assume without loss of generality that
Ω = D. All f ∈ F are holomorphic and non-zero on D, so we can define a holomorphic 2nth
root of each f . Let the family Fn be the family of all 2nth roots of functions in F , such that
g ∈ Fn if and only if g2

n
= f for some f ∈ F . Since F omits 1, Fn omits all 2nth roots of

unity e2kπi/2
n
. Observe that for g ∈ Fn

g# =
|(f1/2n)′|

1 + |f1/2n |2

=
1

2n
|f (1/2n−1)||f ′|
1 + |f |2/2n

=
1

2n
|f (1/2n−1)|
1 + |f |2/2n

(1 + |f |2)f#

=
1

2n
|f |−1(1 + |f |2)

|f |−1/2n + |f |1/2n
f#

=
1

2n
|f |−1 + |f |

|f |−1/2n + |f |1/2n
f#

≥ 1

2n
f#.

Here we make use of the inequality a−1 + a ≥ ax + a−x for a > 0 and 0 < x < 1 - see
Appendix. Thus by Marty’s theorem, we have F not normal implies Fn is not normal for any
fixed n ∈ N.

Let Gn be the non-constant entire function attained by Zalcman’s lemma applied to Fn. From
the lemma, we know that these satisfy G#

n (z) ≤ 1 and thus {Gn} form a normal family by
Marty’s theorem. By taking a suitable subsequence, let Gn → G normally be the (once again
crucially) non-constant entire limit function of the sequence. G is entire by Theorem 5.8.

By Hurwitz’s theorem, we know that each Gn omits the 2nth roots of unity, as they are
normally convergent limit functions from the family Fn which omitted these values. Now
by Hurwitz’s theorem again, G omits all 2nth roots of unity e2πki/2

n
for all n, k ∈ N.3 But

these are dense on the unit circle and since G is holomorphic we must have G(C) open so
either |G(z)| < 1 or |G(z)| > 1. Since 0 is an omitted value also, then |1/G(z)| < 1 is entire
non-constant also. In either case, Liouville implies G must be constant, a contradiction. Thus
F must be normal as required.

The above proof is a showcase of the power of Hurwitz’s theorem and Zalcman’s lemma.
Starting with only 3 omitted values we apply Zalcman’s lemma once to attain entire functions
Gn which omit 2nth roots of unity then apply Zalcman’s lemma a second time to attain an
entire function which omits all of the unit circle. Observe that we really did need at least 3
values omitted, all of 0, 1 and ∞ were crucial. We needed both 0 and ∞ omitted to allow a
holomorphic root to exist and needed 1 omitted to make Fn omit the 2n roots of unity which
lead to the unit circle being omitted in our final limit function G. The omission of 0 was once
needed again at the end to deduce that 1/G was entire.

3Even though we passed to a subsequence, since we have n → ∞ and the 2nth roots of unity include all
previous roots of unity 2m for m ≤ n, we will still omit them all.
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Montel’s result gives a very powerful sufficient condition for normality, however, it is not
at all necessary. For example, the family containing merely the single holomorphic function
{f(z) = z} omits no values in C (or only one value ∞ in C∞ viewed as a meromorphic
function) but is normal. We demonstrate Montel’s FNT with the following examples.

Example 6.12. Let F ⊂ H(D) be the family of functions such that

F := {f ∈ H(D) | ℜ(f(z)) ̸= ℑ(f(z))3 for all z ∈ D}.

Since F omits all values z = x+ iy for all x = y3, then by the FNT, F is normal. We verify
this by making use of the Riemann mapping theorem. Observe that by continuity, we must
have that the image of each function is entirely contained in only one of Ω1 or Ω2, as the line
x = y3 partitions the plane.

Figure 6.1: The image f(D) ⊂ Ω1 ∪ Ω2 for all functions in f ∈ F .

It follows that we can write F as a disjoint union

F = F1 ⊔ F2 F1,F2 ⊂ H(D),

F1 = {f ∈ H(D) | f(D) ⊂ Ω1} F2 = {f ∈ H(D) | f(D) ⊂ Ω2}.

It is clear that Ω1 and Ω2 are simply connected, so by the Riemann mapping theorem, there
exist biholomorphisms h1 : Ω1 → D and h2 : Ω2 → D. Now, as in Example 6.4, we can apply
Lemma 6.2 to deduce that the families h1 ◦ F1 and h2 ◦ F2 are normal if and only if F1 and
F2 are respectively. By Montel’s theorem, each of these is normal. It is clear that a finite
union of normal families is normal, as any sequence must have infinitely many terms from
one of the families, so we can extract a subsequence from there. It follows that F is normal,
confirming the result the FNT gives us.

Example 6.13. It was crucial to our proof that all values omitted by each function were
the same, and asking that each function only omit three values is certainly not sufficient for
normality. This is seen once again with the family F ⊂ M(D) from Example 5.17 defined by

F = {nz : n ∈ N}.

We have shown that this family is not normal. Each function omits an infinitude of points
given by C∞ \B(0, n), but every value in C is attained by all functions with suitably large n.
Only the point ∞ is omitted by every function on D.

46



7 The Picard Theorems

In our final chapter, we make use of the FNT to prove some of the most beautiful results in
complex analysis, the Picard theorems. We follow proof of these results from [7, 11, 40].

7.1 The big Picard theorem

We first prove the big Picard theorem. This is a considerable strengthening of the Casorati-
Weierstrass theorem, which states that the image of any holomorphic function in the neigh-
bourhood of an essential singularity is dense in C. A dense subset can still omit almost all
points, the big Picard theorem strengthens this to tell us we can omit only a single value at
most.

Theorem 7.1 (The Big Picard Theorem). Suppose a function f(z) is holomorphic on a
punctured neighbourhood {z : 0 < |z − z0| < R}, with an essential singularity at z0. Then
on any neighbourhood of z0, f assumes every value in C here, with one possible exception,
infinitely many times.

Proof. By considering f(z − z0) we may assume z0 = 0. We consider the punctured neigh-
bourhood D := {z : 0 < |z| < R}. We show that if at least two values are omitted by f on
D, then f must in fact have a removable singularity or pole at z0, rather than an essential
singularity. Let a, b ∈ C be two distinct values omitted by f on D. Consider the sequence of
holomorphic functions on D

gn(z) = f(z/n).

Since the holomorphic family {gn} omits the values a, b then by the FNT it is a normal family.
By passing to a suitable subsequence, let gn → g normally be the limit function. By Theorem
5.8 either g is holomorphic on D or g ≡ ∞.

First, assume g is holomorphic on D, so we also have Euclidean compact convergence here.
Then g is bounded on any compact subset of D, including the circle |z| = R/2. Let M > 0
be such that |g(z)| < M for all z with |z| = R/2. Since the gn converge to g uniformly on
compact subsets of D, for some N ∈ N we have that for all n ≥ N ,

|f(z/n)| = |gn(z)| < M + 1 for |z| = R/2

=⇒ |f(z)| < M + 1 for |z| = R/2n.

Since this is a bound on all such concentric circles as n → ∞ and R/2n → 0, then, by the
max modulus principle, f is bounded on the annuli {z : R/2n < |z|R/2}. But these annuli
have limit {z : 0 < |z| < R/2}, and so |f(z)| ≤ M + 1 here. Then by the Riemann extension
theorem, z = 0 is a removable singularity, and f extends to be holomorphic here.

Alternatively, assume gn → g ≡ ∞ on D. By Proposition 5.7, 1/gn → 1/g ≡ 0 normally.
The same argument as above tells us that 1/f is holomorphic and bounded on a punctured
neighbourhood of z = 0, so by the Riemann extension theorem 1/f extends to be holomorphic
here with value 1/f(0) = 0. Thus f extends to be meromorphic with a pole at z = 0 since
limz→0 f(z) = ∞.

In either case, the omitted values contradict that z = 0 is an essential singularity. It follows
that in any punctured neighbourhood of an essential singularity, there can be at most one
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omitted value. For the ”infinitely often”, we note that if two values occurred only finitely
often then choosing a punctured disc with a suitably small radius would cause these to be
omitted and the above argument would imply z0 was not an essential singularity. Thus every
value must occur infinitely often in any neighbourhood, with at most one exception.

The brilliance of this result is evident, that a holomorphic function attains all of C but one
infinitely often in an arbitrarily small punctured neighbourhood seems impossible, and yet it
occurs around any isolated essential singularity.

Example 7.2. To get a grasp of how this can happen we view a domain colouring of a
function with an isolated essential singularity. Consider the function

f(z) = e1/z; z ∈ C \ {0}.

Since f is well defined for z ̸= 0 then there is an isolated singularity here. Taking z → 0+

along the positive real axis gives limit ∞, while approaching along the negative real axis
z → 0− gives f(z) → 0. Thus since f is not bounded in a neighbourhood of 0 and does not
uniformly approach infinity here, z = 0 cannot be a removable singularity or pole and thus
must be an essential singularity of f . Observe that for no value of z ∈ C \ {0} does e1/z = 0,
so this value is omitted. By the big Picard theorem, on any neighbourhood of z = 0, f attains
every value in C apart from 0 infinitely often.

Figure 7.1: HSL domain colouring of e1/z around z = 0.

We can see the structure of this infinite assuming of each point in Figure 7.1. Here we use
HSL domain colouring such that for each z in the domain we colour the hue by a factor
of arg(f(z)), saturation is held constant, and the lightness is determined by the modulus
|f(z)| such that points go whiter as the modulus approaches infinity and black towards zero.
Approaching from the left has points of modulus closer to 0 and the right has points with
modulus approaching infinity. As we approach along the positive or negative imaginary axis
we are varying through e1/it = e−i/t as t → 0+ or 0−, so we cycle through all possible
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arguments infinitely often. Combining all possible arguments and all possible moduli > 0, we
can attain any complex number apart from 0.

Example 7.3. It is not necessary that the function should omit at least one value, as we see
with the function

f(z) = sin(1/z); z ∈ C \ {0}.

Since this is well defined for z ̸= 0, f has an isolated singularity here. Approaching along
zn = 1/nπ → 0 gives sin(nπ) = 0 for all n ∈ N, but the sequence zm = 1/(mπ + π/2) → 0
does not give the same value, since sin(mπ + π/2) = (−1)m ̸→ 0. This means the limit is
undefined as we approach z = 0 so there cannot be a removable singularity or pole here, as
in either case, we would have convergence to some value or infinity. Again we must have an
essential singularity. By the big Picard theorem, on any punctured neighbourhood of z = 0,
sin(1/z) assumes every value in C apart from one possible exception, infinitely often.

Figure 7.2: HSL domain colouring of sin(1/z) around z = 0.

To show that sin(1/z) assumes every value in C infinitely often on any punctured neighbour-
hood, let w ∈ C be arbitrary. We want to solve

sin

(
1

z

)
=
ei/z − e−i/z

2i
= w.

Since ei/z ̸= 0 for all z ∈ C we can multiply by this to give us a quadratic in ei/z(
ei/z
)2

− 2iw
(
ei/z
)
+ 1 = 0.

By the fundamental theorem of algebra, this has a solution ei/z = a ∈ C. By construction,
it is clear that regardless of the value of w we have a ̸= 0, as this would not solve the above
polynomial. By the previous example, we can find infinitely many solutions z to the equation
ei/z = a, that are arbitrarily close to zero. These z solve sin(1/z) = w, and thus sin 1/z attains
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every value in C infinitely often on with no exceptions on any punctured neighbourhood of 0.
This can also be shown without the previous example by using the periodicity of sin to note
that if there is a single solution, we can easily find z with an arbitrarily small modulus which
solves this.

7.2 The little Picard theorem

The little brother to this theorem - which was actually proved 5 months prior - is now proven as
a consequence of the big Picard theorem. We first need a short lemma about entire functions.

Lemma 7.4. If f is entire and limz→∞ f(z) = ∞, then f is a polynomial.

Proof. Since f is entire it can be represented as a Taylor series which converges on all C, with
the limit of the Taylor series also approaching ∞ as z → ∞ from the statement.

f(z) =

∞∑
n=0

anz
n

We want to show this sum has finitely many non-zero coefficients. Define g(z) by

g(z) = f(1/z) =
∞∑
n=0

an

(
1

z

)n

This Taylor series must converge for all z ∈ C \ {0}. Since limz→0 g(z) = ∞ then z = 0 is a
pole of g, so there are only finitely many negative power terms of z in its Laurent series here.
Thus there exist finitely many an ̸= 0, so f is polynomial as required.

Theorem 7.5 (The Little Picard Theorem). If f is an entire function [meromorphic function
on C] which omits two [three] values in C [in C∞], then f must be constant.

Proof. If f(z) is a meromorphic function on C that omits some value a ∈ C, then the function
h = 1/(f−a) is entire and omits one less value than f in C. This is because we have composed
f with a Möbius transform taking a to infinity, and these are bijections of C∞ so the total
number of values omitted in C∞ must be preserved under composition. Since h is constant if
and only if f is constant, it suffices to prove the entire case only.

As in the lemma, consider g(z) = f(1/z) and consider the point z = 0 as an isolated singularity
of g. Since f omits two values on C then g omits two values on any punctured neighbourhood
of 0, so z = 0 must be a pole or removable singularity of g by big Picard.

If g has a pole at z = 0 then limz→∞ f(z) = limz→0 g(z) = ∞ so by Lemma 7.4 f is polynomial.
But by the fundamental theorem of algebra, any non-constant polynomial attains every value
in C since for each a ∈ C, f(z)− a must have as many roots counted with multiplicity as the
degree. Thus the only way for f to omit two values is to be a constant polynomial.

If g has a removable singularity at z = 0 then g extends to be entire. Thus g is bounded on
the unit disc D by |g(z)| ≤ M for some M > 0. Thus |f(z)| = |g(1/z)| ≤ M for |z| > 1 and
there is clearly also a bound |f(z)| < K for |z| ≤ 1, since it is holomorphic here. This implies
f is bounded and entire, so constant by Liouville.

In either case, we have f is necessarily constant as required.
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The order the results in these last two chapters have been presented is reversed compared
to how they developed in history, as the more modern work by Zalcman enables us to give
elementary proofs of earlier results. Picard first announced his ”little” theorem on May 19th
1879. His second announcement of his more powerful version of the theorem followed only
five months later on October 20 1879 [40]. Picard’s original proof in [24] made use of the
modular lambda function mentioned in the previous chapter. In 1907 Montel published his
first paper on the topic of normal families, detailing his theorem we saw in Chapter 3. His
FNT was published in 1912 with his proof making use of the modular lambda function also.

Observe that omitting three values forces a meromorphic function on C to be constant and
that the FNT tells us all functions omitting the same three values causes a meromorphic family
to be normal. This suggests that the little Picard theorem is inducing a Bloch property for
the FNT, as we touched on at the end of the previous chapter. Although we have proved
Picard by using the FNT, we can verify that this indeed is the case. Fix distinct α, β, γ ∈ C∞
and let P be the property

⟨f,Ω⟩ ∈ P if and only if f omits α, β, γ on Ω.

For Bloch’s principle condition (i) we note that if a function omits a value on Ω then it clearly
omits this value on any D ⊂ Ω.

For Bloch’s principle condition (ii), if f omits three distinct values α, β, γ ∈ C∞ on Ω and
ψ(z) = az+b, then the function f ◦ϕ also omits the α, β, γ on ψ−1(Ω), since the values passed
into the f part of f ◦ ψ are merely elements of Ω as the translation of the domain is undone.

Condition (iii) is a little more complex. Assume fn → f normally on Ω and Ωn is an increasing
sequence of subsets of C with limit Ω = ∪Ωn. Assume ⟨fn,Ωn⟩ ∈ P for all n ∈ N, then fixing
the index Ωn we observe ⟨fm,Ωn⟩ ∈ P for allm ≥ n by property (i) and the fact that Ωn ⊂ Ωm

for all m ≥ n. By Hurwitz’s theorem1 if fm omits a value α ∈ C∞ on Ωn for all m ≥ n,
then the normally convergent limit function f also omits this value on Ωn. Thus we deduce
⟨f,Ωn⟩ ∈ P for all n ∈ N. Now assume ⟨f,Ω⟩ /∈ P , thus without loss of generality there exists
z0 ∈ Ω such that f(z0) = α. But then there exists m ∈ N such that z0 ∈ Ωm, since Ω = ∪Ωn.
As f attains the value α on Ωm, we have ⟨f,Ωi⟩ /∈ P , contradicting our above deduction. It
follows that we must have ⟨f,Ω⟩ ∈ P .

Finally, condition (iv) follows from Picard’s little theorem, making P a Bloch property and
confirming Montel’s FNT result, as α, β, γ were arbitrary. It was from results such as Mon-
tel’s FNT and Picard’s theorem, along with Montel’s theorem from Chapter 3 paired with
Liouville’s theorem, that lead to the formulation of Bloch’s heuristic principle which was later
made rigorous by Zalcman.

1Note that we can only apply Hurwitz if all three values omitted are the same for every function, so we
could not have P = ”f omits some collection of 3 values”, we really do need that they are the same.
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8 Conclusions and Further Reading

This report has aimed to give an introduction and overview of the theory regarding normal
families in complex analysis. We began by proving the Arzelà–Ascoli theorem, giving us a
condition for the normality of a family in the most general case, that of continuous functions.
It cannot be overstated how crucial the Arzelà–Ascoli theorem is, with every single further
normality criterion proved here having some dependency on it. It directly assisted us in proof
of Montel’s theorem and Marty’s theorem, and by extension was necessary to all of the results
presented in Chapter 6.

Equicontinuity was introduced as part of the Arzelà–Ascoli theorem for families of continuous
functions. We then proved that only local boundedness was needed for families of holomorphic
functions. Of course, any normal family of holomorphic functions is equicontinuous as we
know this to be a necessary condition. Our proof of Montel’s theorem involved proving that
equicontinuity followed from local boundedness combined with the holomorphic structure
of each function. Similarly, any meromorphic normal family is spherically equicontinuous,
although the equivalence condition provided by Marty does not make this explicit in its
statement. Arzelà–Ascoli gave us an equivalent set of conditions for normality, so these hold
in any case regardless of which criterion we have applied to deduce normality.

In two instances, we have seen the utility of knowing a certain family is normal, through
the Riemann mapping theorem and the big Picard theorem. The Riemann mapping theorem
itself has many applications, in areas such as fluid mechanics. By taking a problem in fluid
dynamics defined on some challenging domain and transforming the domain and equations by
the same biholomorphic map, a solution can sometimes be found and then translated back.
For further information on conformal mapping in fluid mechanics, see [30].

Proved in 1975, Zalcman’s lemma ”built a bridge” between normal families and another area
of complex analysis, Nevanlinna theory. Nevanlinna theory is the study of the asymptotic
behaviour of the number of solutions to the equation f(z) = a for meromorphic f , as a varies.
Zalcman’s lemma has been used to prove results in Nevanlinna theory using normal family
methods, as well as derive further normality criteria using the reverse direction. Nevanlinna
theory itself has applications including the study of minimal surfaces. These are surfaces that
have locally minimal area, such that every point on the surface has a neighbourhood which
has minimal area compared with all other surfaces of the same boundary. Further information
regarding this connection to Nevanlinna theory can be found in [29, 31].

One of the first applications of Montel’s FNT was in 1925, in the field of holomorphic dy-
namics. This is the study of the behaviour of points in C under repeated application of a
certain function. In many cases this behaviour can be extremely chaotic in nature, leading to
complicated fractal sets when asking which points satisfy a certain condition under iteration.
By considering the family formed by all repeated iterations of a certain function, normality
can be used to deduce information about the Fatou and Julia sets of a function f . These
are the sets of points in C∞ which are ”well-behaved” and ”chaotic” under iteration of f
respectively. Further information regarding normal families in holomorphic dynamics can be
found in [11].

At the end of Chapter 7 we confirmed the result of the FNT by showing that the little Picard
theorem was inducing a Bloch property. In fact, we can use little Picard to extend the FNT
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to a more general form below, by reformulating the property it induces. This allows each
function to omit different values, so long as they all satisfy a certain condition. Proof of this
can be found in [29].

Theorem 8.1 (Extended FNT). Let F ⊂ M(Ω) be a family of meromorphic functions such
that each function f ∈ F omits three distinct values αf , βf , γf ∈ C∞ which satisfy

χ(αf , βf ) · χ(βf , γf ) · χ(αf , γf ) ≥ ϵ

for some ϵ > 0 independent of f . Then F is normal.

We have proven some of the most well-known criteria for normality in this report, however,
many more have been proven to date. Bloch’s principle can be used to derive other normality
conditions, further details regarding many of these can be found in [5].
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Appendix

Inequality in proof of FNT, with help from [18].

We want to show a−1 + a ≥ ax + a−x for a > 0 and 0 < x < 1.

Consider
f(x) = ax + a−x.

For fixed a, the derivative is given by

f ′(x) = log(a)ax + log(a)a−x = log(a)(ax + a−x)

For a ≥ 1 we know for x > 0 that

log(a) ≥ 0 and (ax + a−x) ≥ 0 =⇒ f ′(x) ≥ 0.

Similarly for 0 < a ≤ 1 and x > 0, we know

log(a) ≤ 0 and (ax + a−x) ≤ 0 =⇒ f ′(x) ≥ 0.

Thus f ′(x) ≥ 0 for each fixed a > 0 for all x ∈ (0,∞). It follows that the function

g(x) = a+ a−1 − ax − a−x

is decreasing for each fixed a > 0, for all x ∈ (0,∞). Since we have g(1) = 0, it follows that
g(x) ≥ 0 for each a > 0 and 0 < x < 1, giving the required inequality.
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Mathematica Code

Figure 1.1 - Bolzano Weierstrass cube

split[cube ]:=Module[{min,max},min = cube[[1]];split[cube ]:=Module[{min,max},min = cube[[1]];split[cube ]:=Module[{min,max},min = cube[[1]];

max = cube[[2]];max = cube[[2]];max = cube[[2]];

x = (max[[1]]−min[[1]])/2;x = (max[[1]]−min[[1]])/2;x = (max[[1]]−min[[1]])/2;

y = (max[[2]]−min[[2]])/2;y = (max[[2]]−min[[2]])/2;y = (max[[2]]−min[[2]])/2;

z = (max[[3]]−min[[3]])/2;z = (max[[3]]−min[[3]])/2;z = (max[[3]]−min[[3]])/2;

{Cuboid[min, {x, y, z}],{Cuboid[min, {x, y, z}],{Cuboid[min, {x, y, z}],

Cuboid[{x, 0, 0}, {2x, y, z}],Cuboid[{x, 0, 0}, {2x, y, z}],Cuboid[{x, 0, 0}, {2x, y, z}],

Cuboid[min+{0, y, 0},min+{x, 2y, z}],Cuboid[min+{0, y, 0},min+{x, 2y, z}],Cuboid[min+{0, y, 0},min+{x, 2y, z}],

Cuboid[min+{x, y, 0},min+{2x, 2y, z}],Cuboid[min+{x, y, 0},min+{2x, 2y, z}],Cuboid[min+{x, y, 0},min+{2x, 2y, z}],

Cuboid[min+{0, 0, z},min+{x, y, 2z}],Cuboid[min+{0, 0, z},min+{x, y, 2z}],Cuboid[min+{0, 0, z},min+{x, y, 2z}],

Cuboid[min+{x, 0, z},min+{2x, y, 2z}],Cuboid[min+{x, 0, z},min+{2x, y, 2z}],Cuboid[min+{x, 0, z},min+{2x, y, 2z}],

Cuboid[min+{0, y, z},min+{x, 2y, 2z}],Cuboid[min+{0, y, z},min+{x, 2y, 2z}],Cuboid[min+{0, y, z},min+{x, 2y, 2z}],

Cuboid[min+{x, y, z},max]}];Cuboid[min+{x, y, z},max]}];Cuboid[min+{x, y, z},max]}];

pointsA = RandomVariate[UniformDistribution[], {10000, 3}];pointsA = RandomVariate[UniformDistribution[], {10000, 3}];pointsA = RandomVariate[UniformDistribution[], {10000, 3}];

mean = {7/16, 7/16, 5/16};mean = {7/16, 7/16, 5/16};mean = {7/16, 7/16, 5/16};

cov = 0.001 ∗ IdentityMatrix[3];cov = 0.001 ∗ IdentityMatrix[3];cov = 0.001 ∗ IdentityMatrix[3];

points = RandomVariate[MultinormalDistribution[mean, cov], 5000];points = RandomVariate[MultinormalDistribution[mean, cov], 5000];points = RandomVariate[MultinormalDistribution[mean, cov], 5000];

pointsB = Select[points,And@@Thread[0<=#<=1]&];pointsB = Select[points,And@@Thread[0<=#<=1]&];pointsB = Select[points,And@@Thread[0<=#<=1]&];

cube = Cuboid[{0, 0, 0}, {1, 1, 1}];cube = Cuboid[{0, 0, 0}, {1, 1, 1}];cube = Cuboid[{0, 0, 0}, {1, 1, 1}];

subcube1 = split[cube][[1]];subcube1 = split[cube][[1]];subcube1 = split[cube][[1]];

subcube2 = split[subcube1][[8]];subcube2 = split[subcube1][[8]];subcube2 = split[subcube1][[8]];

subcube3 = split[subcube2][[4]];subcube3 = split[subcube2][[4]];subcube3 = split[subcube2][[4]];

Graphics3D[{EdgeForm[Thin],Opacity[0.3], cube,Graphics3D[{EdgeForm[Thin],Opacity[0.3], cube,Graphics3D[{EdgeForm[Thin],Opacity[0.3], cube,

Opacity[0.1],Red, subcube1,Opacity[0.1],Red, subcube1,Opacity[0.1],Red, subcube1,

Opacity[0.1],Blue, subcube2,Opacity[0.1],Blue, subcube2,Opacity[0.1],Blue, subcube2,

Opacity[0.1],Blue, subcube3,Opacity[0.1],Blue, subcube3,Opacity[0.1],Blue, subcube3,

Opacity[0.5],PointSize[Tiny],Black,Point[pointsB],Opacity[0.5],PointSize[Tiny],Black,Point[pointsB],Opacity[0.5],PointSize[Tiny],Black,Point[pointsB],
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Opacity[0.5],PointSize[Tiny],Black,Point[pointsA]}]Opacity[0.5],PointSize[Tiny],Black,Point[pointsA]}]Opacity[0.5],PointSize[Tiny],Black,Point[pointsA]}]

Figure 5.1 - stereographic projection

Graphics3D[{Opacity[0.6],LightBlue, Sphere[],Graphics3D[{Opacity[0.6],LightBlue,Sphere[],Graphics3D[{Opacity[0.6],LightBlue, Sphere[],

Opacity[0.4],LightBlue, Cuboid[{−3,−3, 0}, {3, 3, 0}],Opacity[0.4],LightBlue, Cuboid[{−3,−3, 0}, {3, 3, 0}],Opacity[0.4],LightBlue, Cuboid[{−3,−3, 0}, {3, 3, 0}],

Opacity[0.5],Black,Arrow[{{0, 0, 0}, {0, 0, 2}}],Opacity[0.5],Black,Arrow[{{0, 0, 0}, {0, 0, 2}}],Opacity[0.5],Black,Arrow[{{0, 0, 0}, {0, 0, 2}}],

Opacity[0.5],Arrow[{{0, 0, 0}, {0, 0,−2}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0, 0,−2}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0, 0,−2}}],

Opacity[0.5],Arrow[{{0, 0, 0}, {0, 3, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0, 3, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0, 3, 0}}],

Opacity[0.5],Arrow[{{0, 0, 0}, {0,−3, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0,−3, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {0,−3, 0}}],

Opacity[0.5],Arrow[{{0, 0, 0}, {3, 0, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {3, 0, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {3, 0, 0}}],

Opacity[0.5],Arrow[{{0, 0, 0}, {−3, 0, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {−3, 0, 0}}],Opacity[0.5],Arrow[{{0, 0, 0}, {−3, 0, 0}}],

Opacity[1],PointSize[Medium],Point[{0, 0, 1}],Opacity[1],PointSize[Medium],Point[{0, 0, 1}],Opacity[1],PointSize[Medium],Point[{0, 0, 1}],

Text[Style[“N=(0, 0, 1)”,FontSize->11], {0, 0, 1.2}],Text[Style[“N=(0, 0, 1)”,FontSize->11], {0, 0, 1.2}],Text[Style[“N=(0, 0, 1)”,FontSize->11], {0, 0, 1.2}],

Opacity[1],Point[{1.5,−2, 0}],Opacity[1],Point[{1.5,−2, 0}],Opacity[1],Point[{1.5,−2, 0}],

Text[Style[“z=(x, y, 0)”,FontSize->11], {1.5,−2,−0.2}],Text[Style[“z=(x, y, 0)”,FontSize->11], {1.5,−2,−0.2}],Text[Style[“z=(x, y, 0)”,FontSize->11], {1.5,−2,−0.2}],

Opacity[1],Point[{0.4138,−0.5517, 0.7241}],Opacity[1],Point[{0.4138,−0.5517, 0.7241}],Opacity[1],Point[{0.4138,−0.5517, 0.7241}],

Text[Style[“P(z)”,FontSize->11], {0.4138 + 0.1,−0.5517− 0.1, 0.7241 + 0.2}],Text[Style[“P(z)”,FontSize->11], {0.4138 + 0.1,−0.5517− 0.1, 0.7241 + 0.2}],Text[Style[“P(z)”,FontSize->11], {0.4138 + 0.1,−0.5517− 0.1, 0.7241 + 0.2}],

Opacity[1],Line[{{0, 0, 1}, {2.25,−3,−0.5}}]}]Opacity[1],Line[{{0, 0, 1}, {2.25,−3,−0.5}}]}]Opacity[1],Line[{{0, 0, 1}, {2.25,−3,−0.5}}]}]

Figure 5.2 - proof of Marty’s theorem

p1 = {1, 6};p1 = {1, 6};p1 = {1, 6};

p2 = {3, 2};p2 = {3, 2};p2 = {3, 2};

sp1 = {2 ∗ p1[[1]]/(1 + p1[[1]]∧2 + p1[[2]]∧2), 2 ∗ p1[[2]]/(1 + p1[[1]]∧2 + p1[[2]]∧2),sp1 = {2 ∗ p1[[1]]/(1 + p1[[1]]∧2 + p1[[2]]∧2), 2 ∗ p1[[2]]/(1 + p1[[1]]∧2 + p1[[2]]∧2),sp1 = {2 ∗ p1[[1]]/(1 + p1[[1]]∧2 + p1[[2]]∧2), 2 ∗ p1[[2]]/(1 + p1[[1]]∧2 + p1[[2]]∧2),

(p1[[1]]∧2 + p1[[2]]∧2− 1)/(p1[[1]]∧2 + p1[[2]]∧2 + 1)};(p1[[1]]∧2 + p1[[2]]∧2− 1)/(p1[[1]]∧2 + p1[[2]]∧2 + 1)};(p1[[1]]∧2 + p1[[2]]∧2− 1)/(p1[[1]]∧2 + p1[[2]]∧2 + 1)};

sp2 = {2 ∗ p2[[1]]/(1 + p2[[1]]∧2 + p2[[2]]∧2), 2 ∗ p2[[2]]/(1 + p2[[1]]∧2 + p2[[2]]∧2),sp2 = {2 ∗ p2[[1]]/(1 + p2[[1]]∧2 + p2[[2]]∧2), 2 ∗ p2[[2]]/(1 + p2[[1]]∧2 + p2[[2]]∧2),sp2 = {2 ∗ p2[[1]]/(1 + p2[[1]]∧2 + p2[[2]]∧2), 2 ∗ p2[[2]]/(1 + p2[[1]]∧2 + p2[[2]]∧2),

(p2[[1]]∧2 + p2[[2]]∧2− 1)/(p2[[1]]∧2 + p2[[2]]∧2 + 1)};(p2[[1]]∧2 + p2[[2]]∧2− 1)/(p2[[1]]∧2 + p2[[2]]∧2 + 1)};(p2[[1]]∧2 + p2[[2]]∧2− 1)/(p2[[1]]∧2 + p2[[2]]∧2 + 1)};

Hemisphere = ParametricPlot3D[{Cos[v],Cos[u]Sin[v], Sin[u]Sin[v]}, {u, 0,Pi}, {v, 0, π},Hemisphere = ParametricPlot3D[{Cos[v],Cos[u]Sin[v],Sin[u]Sin[v]}, {u, 0,Pi}, {v, 0, π},Hemisphere = ParametricPlot3D[{Cos[v],Cos[u]Sin[v], Sin[u]Sin[v]}, {u, 0,Pi}, {v, 0, π},

PlotStyle->{LightBlue,Opacity[0.2]}, MeshStyle->{Gray,Opacity[0.3]}];PlotStyle->{LightBlue,Opacity[0.2]}, MeshStyle->{Gray,Opacity[0.3]}];PlotStyle->{LightBlue,Opacity[0.2]}, MeshStyle->{Gray,Opacity[0.3]}];

SphPoints = Graphics3D[{Opacity[1],Black,PointSize[0.015],Point[sp1],SphPoints = Graphics3D[{Opacity[1],Black,PointSize[0.015],Point[sp1],SphPoints = Graphics3D[{Opacity[1],Black,PointSize[0.015],Point[sp1],
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Text [Style ["f(z0)",FontSize->16] , sp1 + {−0.07,−0.07, 0.1}] ,Text [Style ["f(z0)",FontSize->16] , sp1 + {−0.07,−0.07, 0.1}] ,Text [Style ["f(z0)",FontSize->16] , sp1 + {−0.07,−0.07, 0.1}] ,

Point[sp2],Point[sp2],Point[sp2],

Text [Style ["f(z1)",FontSize->16] , sp2 + {0.15,−0.15, 0.1}] ,Text [Style ["f(z1)",FontSize->16] , sp2 + {0.15,−0.15, 0.1}] ,Text [Style ["f(z1)",FontSize->16] , sp2 + {0.15,−0.15, 0.1}] ,

Text[Style[“f(γ)”,FontSize->16,FontColor->Purple], (sp2 + sp1)/2 + {0.15, 0.2, 0.1}],Text[Style[“f(γ)”,FontSize->16,FontColor->Purple], (sp2 + sp1)/2 + {0.15, 0.2, 0.1}],Text[Style[“f(γ)”,FontSize->16,FontColor->Purple], (sp2 + sp1)/2 + {0.15, 0.2, 0.1}],

Thickness[0.004],Line[{sp1, sp2}]}];Thickness[0.004],Line[{sp1, sp2}]}];Thickness[0.004],Line[{sp1, sp2}]}];

n = 8;n = 8;n = 8;

A = 0.3;A = 0.3;A = 0.3;

SphPath = ParametricPlot3D[{2 ∗ (1 + 2 ∗ t+ASin[nPit])/(1 + (1 + 2 ∗ t+ASin[nPit])∧2+SphPath = ParametricPlot3D[{2 ∗ (1 + 2 ∗ t+ASin[nPit])/(1 + (1 + 2 ∗ t+ASin[nPit])∧2+SphPath = ParametricPlot3D[{2 ∗ (1 + 2 ∗ t+ASin[nPit])/(1 + (1 + 2 ∗ t+ASin[nPit])∧2+

(6− 4 ∗ t+ASin[nPit])∧2),(6− 4 ∗ t+ASin[nPit])∧2),(6− 4 ∗ t+ASin[nPit])∧2),

2 ∗ (6− 4 ∗ t+ASin[nPit])/(1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2),2 ∗ (6− 4 ∗ t+ASin[nPit])/(1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2),2 ∗ (6− 4 ∗ t+ASin[nPit])/(1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2),

((6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2− 1)/((6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2− 1)/((6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2− 1)/

((1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2))}, {t, 0, 1},PlotStyle->Purple];((1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2))}, {t, 0, 1},PlotStyle->Purple];((1 + (6− 4 ∗ t+ASin[nPit])∧2 + (1 + 2 ∗ t+ASin[nPit])∧2))}, {t, 0, 1},PlotStyle->Purple];

Show[SphPoints,SphPath,Hemisphere,Boxed->False]Show[SphPoints, SphPath,Hemisphere,Boxed->False]Show[SphPoints,SphPath,Hemisphere,Boxed->False]

Figures 7.1 and 7.2 - HSL domain colourings

Below is the code to generate Figure 7.1. For Figure 7.2, one must simply exchange ”Exp”
with ”Sin” on the first line. Some of this code including the specific colour function to express
HSL domain colouring in terms of the HSV format of the Hue function is adapted from [28].

f [z ]:=Exp[1/z];f [z ]:=Exp[1/z];f [z ]:=Exp[1/z];

resolution = 900;resolution = 900;resolution = 900;

colourHSL =colourHSL =colourHSL =

ParametricPlot[{Re[x+ Iy], Im[x+ Iy]}, {x,−0.2, 0.2}, {y,−0.2, 0.2},ParametricPlot[{Re[x+ Iy], Im[x+ Iy]}, {x,−0.2, 0.2}, {y,−0.2, 0.2},ParametricPlot[{Re[x+ Iy], Im[x+ Iy]}, {x,−0.2, 0.2}, {y,−0.2, 0.2},

ColorFunction → Function[{x, y},Hue[Arg[f [(x+ Iy)]]/(2Pi),ColorFunction → Function[{x, y},Hue[Arg[f [(x+ Iy)]]/(2Pi),ColorFunction → Function[{x, y},Hue[Arg[f [(x+ Iy)]]/(2Pi),

1, 1− 2/Pi ArcTan[Log[1 + 1/Abs[f [x+ Iy]]]],1, 1− 2/Pi ArcTan[Log[1 + 1/Abs[f [x+ Iy]]]],1, 1− 2/Pi ArcTan[Log[1 + 1/Abs[f [x+ Iy]]]],

1− 2/Pi ArcTan[Log[1 + Abs[f [x+ Iy]]]/2]]],1− 2/Pi ArcTan[Log[1 + Abs[f [x+ Iy]]]/2]]],1− 2/Pi ArcTan[Log[1 + Abs[f [x+ Iy]]]/2]]],

ColorFunctionScaling → False,ColorFunctionScaling → False,ColorFunctionScaling → False,

PlotRange → {{−0.20, 0.20}, {−0.20, 0.20}},PlotRange → {{−0.20, 0.20}, {−0.20, 0.20}},PlotRange → {{−0.20, 0.20}, {−0.20, 0.20}},

PlotPoints → resolution,PlotPoints → resolution,PlotPoints → resolution,

FrameStyle → Black, Axes → False]FrameStyle → Black, Axes → False]FrameStyle → Black, Axes → False]
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